

G. Vidya Sagar

NEW AGE INTERNATIONAL PUBLISHERS

MCQs in Biochemistry

This page intentionally left blank

MCQs in Biochemistry

G. Vidya Sagar

Director and Principal
Veerayatan Institute of Pharmacy
Mandvi, Kutch (Gujarat)
Dean, Faculty of Pharmaceutical Sciences
KSKV Kachchh University
Bhuj (Gujarat)

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS

New Delhi • Bangalore • Chennai • Cochin • Guwahati • Hyderabad Jalandhar • Kolkata • Lucknow • Mumbai • Ranchi Visit us at www.newagepublishers.com Copyright © 2008, New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers

All rights reserved.

No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. *All inquiries should be emailed to rights@newagepublishers.com*

ISBN (13): 978-81-224-2627-4

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com

Dedicated to

PROF. DR. F.V. MANVI

Secretary

KLE Society, BELGAUM
KARNATAKA.

"To My First Pharmacy teacher with Love"

This page intentionally left blank

FOREWORD

Competitive Examinations are the order of the day. All Colleges conducting professional courses at PG level are admitting students based on common entrance examination, which is of objective type.

In Pharmacy, M.Pharm admissions are based on qualifying the GATE enterance examination conducted by Govt. of India.

In this book, The author has done good work in preparing several objective questions which help the students to face the subject in the examination with poise and confidence.

The book is well balanced and consists of multiple choice questions from all the important topics like carbohydrate metabolism and other important Biochemical aspects.

The typesetting and quality of printing is good. The author is also well experienced in taking up this type of work.

I recommend this book to all the students preparing for GATE examination and also for Medical and Pharmacy College libraries.

PROF. B.G. SHIVANANDA Principal AL-AMEEN COLLEGE OF PHARMACY BANGALORE.

PREFACE

I have brought out this book basically for students who plan to appear for Biochemistry in the entrance examinations like JIPMER and other Medical, Pharmacy, Physiotherapy, Nursing and other Paramedical PG Entrance Examinations. There is a dearth of good entrance manual of Biochemistry for the above said examinations. Hence, I have prepared an exhaustive Question bank of around 5000 MCQs with answers covering a wide spectrum of basic Biochemical topics of the subject.

Some of the important topics which are given a good coverage include Carbohydrate metabolism, Protein metabolism, Lipid metabolism, Nucleic acids, Enzymes, Vitamins and Mineral metabolism.

The objective questions are prepared based on the background taken from previous question papers of Professional medical and Paramedical competitive entrance examinations.

The book serves as a ready reckoner for Biochemistry as far as objective pattern is concerned. I feel satisfied if the book serves the purpose for which it is intended.

I have tried to minimize typographical errors but still some must have crept in. If they are brought to my notice, I will be rectifying them in the next edition.

Constructive Criticism is always welcome

G. Vidya Sagar

ACKNOWLEDGEMENTS

I wish to express my profound gratitude and benevolence to the following who were the inspiring force in making this book a reality

- Sadhvi Shilapiji
 Chair person, Veerayatan Vidyapeeth,
 Jakhaniya, Kutch, Gujarat
- Prof. Dr. R.K. Goyal
 L.M. College of Pharmacy
 Ahmedabad, Gujarat
- Prof. J.V.L.N. Sheshagiri Rao
 Dept. of Pharmaceutical Sciences
 Andhra University, Vishakhapatnam, A.P.

- Prof. Dr. Kishor Pramod Bhusari Principal, Nagpur College of Pharmacy Nagpur.
- Prof. Dr. R. Rangari
 Principal, J.N. Chaturvedi College of Pharmacy
 Nagpur
- Prof. Dr. Anant Naik Nagappa
 Pharmacy group, Birla Institute of Technology & Sciences
 Pilani, Rajasthan
- Prof. Dr. Srinivas Rao
 Principal, VEL's College of Pharmacy Chennai

Finally, I express my gratitude to Mr. Saumya Gupta. MD, New Age International (P) Limited, New Delhi, for his encouragement and support.

Dr. G.Vidya Sagar

SOME VALUABLE COMMENTS

This book is very useful for students appearing for GATE Exams. Recommended reading.

Prof. Dr. Subhas C. Marihal

Principal, Goa College of Pharmacy, Goa.

• Biochemistry made simple in the form of multiple choice questions. Strongly recommended.

Prof. Dr. Vijaykumar Ishwar Hukkeri

Principal, KLE College of Pharmacy, Hubli

Dr. Vidya Sagar can be applauded for his untiring efforts in bringing out such a good book.
 Recommended for students and Library

Dr. G. Devala Rao

Principal, Sidhartha College of Pharmaceutical Sciences Vijaywada, A.P.

• This book will be very useful companion for students appearing for PG Medical, Pharmacy, Nursing and Physiotherapy competitive exams.

Prof. Dr. T.K. Ravi

Principal, Sri Ramakrishna Institute of Pharmaceutical Science
Coimbatore.

• MCQs are well framed, mostly from previous entrance examinations. Commendable work.

Prof. Madhukar R. Tajne

Deptt. of Pharmaceutical Sciences, Nagpur University, Nagpur

CONTENTS

Preface	(x)
Chapter 1 INTRODUCTION TO BIOCHEMISTRY	1
CHAPTER 2 CARBOHYDRATES AND CARBOHYDRATE METABOLISM	5
CHAPTER 3 PROTEINS & PROTEIN METABOLISM	27
CHAPTER 4 FATS & FATTY ACID METABOLISM	75
CHAPTER 5 VITAMINS	113
CHAPTER 6 ENZYMES	141
CHAPTER 7 MINERAL METABOLISM	183
CHAPTER 8 HORMONE METABOLISM	209
CHAPTER 9 NUCLEIC ACIDS	237
CHAPTER 10 WATER & ELECTROLYTE BALANCE	281

This page intentionally left blank

CHAPTER 1

Introduction to Biochemistry

8. Which are the cholesterol esters that enter cells through the receptor-mediated

(A) Endoplasmin reticulum

(B) Lysosomes

endocytosis of lipoproteins hydrolyzed?

(A) The hydroxyl group is located near the centre

(B) Most of the cholesterol is in the form of α

(C) The steroid nucleus form forms a rigid, planar

of the lipid layer

cholesterol ester

structure

2.		llowing is required for and storage of the	(C) Plasma membrane receptor(D) Mitochondria
	hormone insuling (A) Mn ⁺⁺ (C) Ca ⁺⁺	(B) Mg++ (D) Zn++	9. Which of the following phospholipids localized to a greater extent in the ou- leaflet of the membrane lipid bilayer?
3.	• •	ch substance in the body	(A) Choline phosphoglycerides(B) Ethanolamine phosphoglycerides(C) Inositol phosphoglycerides
	(A) Glucose (C) Protein	(B) Glycogen (D) Lipids	(D) Serine phosphoglycerides
4.	Milk is deficient i	n which vitamins?	 All the following processes occur rapid in the membrane lipid bilayer except
	(A) Vitamin C(C) Vitamin B₂	(B) Vitamin A (D) Vitamin K	(A) Flexing of fatty acyl chains(B) Lateral diffusion of phospholipids
5.	Milk is deficient o	of which mineral?	(C) Transbilayer diffusion of phopholipids
	(A) Phosphorus (C) Iron	(B) Sodium (D) Potassium	(D) Rotation of phospholipids around their loaxes
6.	Synthesis of pros	taglandinsis is inhibited	11. Which of the following statement correct about membrane cholesterol?

1. A drug which prevents uric acid synthesis

oxidase is

(A) Aspirin

(A) Aspirin

(A) Pancreas

(C) Kidney

Fluoride

(C) Colchicine

by inhibiting the enzyme xanthine

(B) Allopurinol

(D) Probenecid

(B) Arsenic

(D) Cyanide

(B) Liver

(D) Muscle

7. HDL is synthesized and secreted from

(D) The hydrocarbon chain of cholesterol projects into the extracellular fluid

12. Which one is the heaviest particulate component of the cell?

- (A) Nucleus
- (B) Mitochondria
- (C) Cytoplasm
- (D) Golgi apparatus

13. Which one is the largest particulate of the cytoplasm?

- (A) Lysosomes
- (B) Mitochondria
- (C) Golgi apparatus
- (D) Entoplasmic reticulum

14. The degradative Processess are categorized under the heading of

- (A) Anabolism
- (B) Catabolism
- (C) Metabolism
- (D) None of the above

15. The exchange of material takes place

- (A) Only by diffusion
- (B) Only by active transport
- (C) Only by pinocytosis
- (D) All of these

16. The average pH of Urine is

- (A) 7.0
- (B) 6.0
- (C) 8.0
- (D) 0.0

17. The pH of blood is 7.4 when the ratio between H₂CO₃ and NaHCO₃ is

- (A) 1:10
- (B) 1:20
- (C) 1:25
- (C) 1:30

18. The phenomenon of osmosis is opposite to that of

- (A) Diffusion
- (B) Effusion
- (C) Affusion
- (D) Coagulation

The surface tension in intestinal lumen between fat droplets and aqueous medium is decreased by

- (A) Bile Salts
- (B) Bile acids
- (C) Conc. H₂SO₄
- (D) Acetic acid

20. Which of the following is located in the mitochondria?

- (A) Cytochrome oxidase
- (B) Succinate dehydrogenase

- (C) Dihydrolipoyl dehydrogenase
- (C) All of these

21. The most active site of protein synthesis is the

- (A) Nucleus
- (B) Ribosome
- (C) Mitochondrion
- (D) Cell sap

The fatty acids can be transported into and out of mitochondria through

- (A) Active transport
- (B) Facilitated transfer
- (C) Non-facilitated transfer
- (D) None of these

23. Mitochondrial DNA is

- (A) Circular double stranded
- (B) Circular single stranded
- (C) Linear double helix
- (D) None of these

The absorption of intact protein from the gut in the foetal and newborn animals takes place by

- (A) Pinocytosis
- (B) Passive diffusion
- (C) Simple diffusion
- (D) Active transport

The cellular organelles called "suicide bags" are

- (A) Lysosomes
- (B) Ribosomes
- (C) Nucleolus
- (D) Golgi's bodies

26. From the biological viewpoint, solutions can be grouped into

- (A) Isotonic solution
- (B) Hypotonic solutions
- (C) Hypertonic solution
- (D) All of these

27. Bulk transport across cell membrane is accomplished by

- (A) Phagocytosis
- (B) Pinocytosis
- (C) Extrusion
- (D) All of these

28. The ability of the cell membrane to act as a selective barrier depends upon

- (A) The lipid composition of the membrane
- (B) The pores which allows small molecules
- (C) The special mediated transport systems
- (D) All of these

29. Carrier protein can

- (A) Transport only one substance
- (B) Transport more than one substance
- (C) Exchange one substance to another
- (D) Perform all of these functions

30. A lipid bilayer is permeable to

- (A) Urea
- (B) Fructose
- (C) Glucose
- (D) Potassium

31. The Golgi complex

- (A) Synthesizes proteins
- (B) Produces ATP
- (C) Provides a pathway for transporting chemicals
- (D) Forms glycoproteins

32. The following points about microfilaments are true except

- (A) They form cytoskeleton with microtubules
- (B) They provide support and shape
- (C) They form intracellular conducting channels
- (D) They are involved in muscle cell contraction

33. The following substances are cell inclusions except

- (A) Melanin
- (B) Glycogen
- (C) Lipids
- (D) Centrosome

34. Fatty acids can be transported into and out of cell membrane by

- (A) Active transport
- (B) Facilitated transport
- (C) Diffusion
- (D) Osmosis

35. Enzymes catalyzing electron transport are present mainly in the

- (A) Ribosomes
- (B) Endoplasmic reticulum
- (C) Lysosomes
- (D) Inner mitochondrial membrane

36. Mature erythrocytes do not contain

- (A) Glycolytic enzymes (B) HMP shunt enzymes
- (C) Pyridine nucleotide(D) ATP

37. In mammalian cells rRNA is produced mainly in the

- (A) Endoplasmic reticulum
- (B) Ribosome
- C) Nucleolus
- (D) Nucleus

38. Genetic information of nuclear DNA is transmitted to the site of protein synthesis by

- (A) rRNA
- (B) mRNA
- (C) tRNA
- (D) Polysomes

39. The power house of the cell is

- (A) Nucleus
- (B) Cell membrane
- (C) Mitochondria
- (D) Lysosomes

40. The digestive enzymes of cellular compounds are confined to

- (A) Lysosomes
- (B) Ribosomes
- (C) Peroxisomes
- (D) Polysomes

ANSWERS

- 2. D 1. B 3. D 7. B 8. B 9. A 13. B 14. B 15. D 19. A 20. D 21.B 25. A 27. D 26. D 31. D 32. C 33. D 37. C 38. D 39. C
- 4. A 10. C
- 5. C

17. B

6. A 12. A

18. A

36. C

- 16. B 22. B
- 22. B 28. D
- 23. A 29. D 35. D
- 24. A 30. A

34. B 40. A

This page intentionally left blank

CHAPTER 2

CARBOHYDRATES AND CARBOHYDRATE METABOLISM

••	is			monosacchariaes	7.				around a single
	(A)	$C_nH_{2n}O_n$	(B)	$C_{2n}H_2O_n$		car	bon atom are te	rme	ed
	(C)	$C_nH_2O_{2n}$	(D)	$C_nH_{2n}O_{2n}$		(A)	Epimers	(B)	Anomers
2.	The	general formul	a o	f polysaccharides		(C)	Optical isomers	(D)	Stereoisomers
	is				10.	Isor	mers differina as	s a r	esult of variations
		$(C_6H_{10}O_5)_n$							—OH and —H on
	(C)	$(C_6H_{10}O_6)_n$	(D)	$(C_6H_{10}O_6)_n$				and	d 4 of glucose are
3.	The	aldose sugar is					own as		
	(A)	Glycerose	(B)	Ribulose			Epimers		
	(C)	Erythrulose	(D)	Dihydoxyacetone		(C)	Optical isomers	(D)	Steroisomers
4.	A t	riose sugar is			11.	The	most important	t ep	imer of glucose is
	(A)	Glycerose	(B)	Ribose		(A)	Galactose	(B)	Fructose
	(C)	Erythrose	(D)	Fructose		(C)	Arabinose	(D)	Xylose
5.	A p	entose sugar is			12.	α-D	-glucose and eta -	·D-a	llucose are
	(A)	Dihydroxyacetone	(B)	Ribulose			-		
	(C)	Erythrose	(D)	Glucose			Stereoisomers		•
6.	The	pentose sugar	pre	sent mainly in the		(C)	Anomers	(D)	Keto-aldo pairs
	hea	irt muscle is		•	13.				+ 52.5 °←+ 19° β-
	(A)	Lyxose	(B)	Ribose		D-g	lucose for gluco	se c	ibove represents
	(C)	Arabinose	(D)	Xylose		(A)	Optical isomerism	(B)	Mutarotation
7.	Poly	ysaccharides are	•			(C)	Epimerisation	(D)	D and L isomerism
	(A)	Polymers	(B)	Acids	14.	Con	npounds having	g th	e same structural
		Proteins	(D)	Oils					ing in spatial
	(C)	Tiolems	(-)						
8.		number of isom		of glucose is			figuration are k		
8.		number of ison		•		(A)	figuration are k Stereoisomers Optical isomers	(B)	Anomers

(A) Glucose + glucose

(B) Glucose + fructose

15.	In glucose the orientation of the —H and —OH groups around the carbon atom 5					Glucose + gala			
	adj car	acent to the ter bon determine	mine	al primary alcohol	25.	The monosaccharide units are linked by 1 → 4 glycosidic linkage in			
		D or L series					Maltose		Sucrose
		Dextro or levorote	,				Cellulose	, ,	Cellobiose
		α and β anomers	5		26	Wh	sich of the follo		is a non-reducing
.,		·			20.		jar?	wilig	is a non-readding
16.	sub	stances is		the blood group		(A)	Isomaltose		Maltose Trehalose
		Sucrose		Fucose		` '	Lactose		
	(C)	Arabinose	(D)	Maltose	27.			llowi	ng is a reducing
1 7.	Ery	thromycin cont	ains			_	jar?	(D)	Tankalana
	(A)	Dimethyl amino	sugar				Sucrose Isomaltose		Trehalose Agar
		Trimethyl amino	_			(0)	isomanose	(D)	Agui
		Sterol and sugar			00	A .I	:		Harris a alessa 200
	(D)	Glycerol and sug	gar		28.				l by 1,1-glycosidie · monosaccharide
18.	A s	ugar alcohol is					ts is	mon	inonosacciia i ac
	(A)	Mannitol	(B)	Trehalose		(A)	Lactose	(B)	Maltose
	(C)	Xylulose	(D)	Arabinose		(C)	Trehalose	(D)	Sucrose
19.	The	major sugar o	f ins	ect hemolymph is	29.	Ac	dissaccharide f	orme	d by 1,1-glycosidie
	(A)	Glycogen	(B)	Pectin		link	cage between		monosaccharide
	(C)	Trehalose	(D)	Sucrose		uni	ts is		
20.	The	sugar found ii	n DN	A is			Lactose	. ,	Maltose
		Xylose		Ribose		(C)	Trehalose	(D)	Sucrose
		, Deoxyribose		Ribulose	30.	Μu	tarotation refe	ers to	change in
21.	The	sugar found ii	n RN	Δis		(A)	рН	(B)	Optical rotation
		Ribose		Deoxyribose		(C)	Conductance	(D)	Chemical properties
	(C)			Erythrose	31.	Αp	oolysacchharid	le wh	ich is often called
22	` '			•		ani	mal starch is		
22.		sugar found i				(A)	Glycogen	(B)	Starch
		Galactose		Glucose		(C)	Inulin	(D)	Dextrin
		Fructose	(D)	Lactose	32.	The	homopoly	sacch	aride used for
23.	Inv	ert sugar is				_	avenous infusi	ion as	plasma substitute
		Lactose		Sucrose		is			
		Hydrolytic produ	cts of	sucrose			Agar		Inulin
	(D)	Fructose				(C)	Pectin	(D)	Starch
24.	Suc	rose consists o	f		33.				ed in assessing the
	/ ^ \	Chicago i aluca				glo	merular fittrat	rion ro	ate (GFR) is

(A) Glycogen

(C) Inulin

(B) Agar

(D) Hyaluronic acid

34.	The constituent unit of in (A) Glucose (B) From (C) Manness (D) Constitution	uctose	action		se synthesized by the oc mesenteroids in a
35.	(C) Mannose (D) Go The polysaccharide f exoskeleton of invertebro		` '	extrans mit dextrin	(B) Dextrin (D) Inulin
	(A) Pectin (B) Ch	44		gam forms	(B) Sorbitol
36.	Which of the following is o	a heteroglycan?	` '		(D) Mannitol and sorbitol
	(A) Dextrins (B) As (C) Inulin (D) Ch	TJ.		se on oxidatio	on does not give (B) Glucosaccharic acid
37.	The glycosaminoglycan v		(C) G	Sluconic acid	(D) Glucuronic acid
	(A) Dermatan sulphate	46.	yields		tose with conc HNO ₃
	(B) Chondroitin sulphate (C) Keratan sulphate		, ,	Nucic acid accharic acid	(B) Glucuronic acid (D) Gluconic acid
	(D) Heparan sulphate		A pos	itive Benedict'	s test is not given by
38.	The glycosaminoglycan v	which does not	(A) Si (C) N		(B) Lactose (D) Glucose
	(A) Hyaluronic acid (B) Heparin	48.	Starch	n is a	
	(C) Chondroitin sulphate (D) Dermatan sulphate			,	(B) Monosaccharide (D) None of these
39.		d in abundance 49.	A pos with	sitive Seliwand	off's test is obtained
	(A) Heart muscle (B) Liv (C) Adrenal cortex (D) Co		(A) G (C) Lo		(B) Fructose (D) Maltose
40.	Repeating units of hyalur	50.	Osazo	ones are not fo	ormed with the
-101	(A) N-acetyl glucosamine and (B) N-acetyl galactosamine	d D-glucuronic acid	(A) G (C) Si		(B) Fructose (D) Lactose
	acid	51.		nost abundant Ture is	carbohydrate found
	(C) N-acetyl glucosamine and(D) N-acetyl galactosamine a		(A) Si		(B) Glycogen
41.	The approximate number		(C) C	ellulose	(D) Chitin
	amylopectin is	52.			tion is indicated when excreted in the first 15
	(A) 10 (B) 20 (C) 40 (D) 80		minut	es is	
42.			(A) 2(C) 4((B) 35% (D) 45%
	units of each branch is		, ,		•
	(A) 10–20 (B) 24				renal disease is capacity of the tubule to
	(C) 30–40 (D) 40	U-3U		erform osmotic wo	

	(B)	Decrease in ma	ximal tubular excretory	62.	Fru	ctose is present	in l	hydrolysate of
		capacity Decrease in filtrati			, ,	Sucrose Both of the above	٠,	Inulin None of these
		Decrease in renal		63.	A c	arbohydrate fou	ınd	in DNA is
54.			n the measurement of		(A)	Ribose		Deoxyribose
		Specific gravity of			(C)	Ribulose	(D)	All of these
		Concentration of a		64.	Rib	ulose is a these		
		Volume of urine in			. ,	Ketotetrose		Aldotetrose
55.						Ketopentose		Aldopentose
JJ.		ges from	y of urine normally	65.	_	arbohydrate, c ctrose is	om	monly known as
		0.900-0.999	(B) 1.003-1.030		(A)	Dextrin	(B)	D-Fructose
	(C)	1.000–1.001	(D) 1.101–1.120		(C)	D-Glucose	(D)	Glycogen
56.	Spe	cific gravity of ι	rine increases in	66.	A c	arbohydrate fou	ınd	only in milk is
	, ,	Diabetes mellitus			(A)	Glucose	(B)	Galactose
		Chronic glomerulo	•		(C)	Lactose	(D)	Maltose
		Compulsive polyd	ypsia	67.			knov	wn commonly as
		Hypercalcemia				ert sugar, is	(D)	6
57.		ation of specification of specification of the spec	c gravity of urine to			Fructose Glucose		Sucrose Lactose
	1.0	i o is iodila ili			(0)	Glucose	(0)	Laciose
	/ A \	Diabatas insinidus						
		Diabetes insipidus		68.			chro	aide among the
	(B)	Compulsive polyd		68.	foll	neteropolysaco owing is Inulin		
	(B) (C)	•	ypsia	68.	foli (A)	owing is	(B)	Cellulose Dextrin
58.	(B) (C) (D)	Compulsive polyd Cystinosis	ypsia onephritis		folia (A) (C) The	owing is Inulin Heparin predominant	(B) (D)	Cellulose
58.	(B) (C) (D)	Compulsive polyder Cystinosis Chronic glomerula dis test is the management of the	ypsia onephritis easure of capacity of the tubule to		(A) (C) The	owing is Inulin Heparin predominant ution is	(B) (D)	Cellulose Dextrin
58.	(B) (C) (D) Ad (A)	Compulsive polydicystinosis Chronic glomerula dis test is the mairment of the perform osmotic w	onephritis easure of capacity of the tubule to ork		(A) (C) The solu (A)	Inulin Heparin predominant ution is Acyclic form	(B) (D) for	Cellulose Dextrin
58.	(B) (C) (D) Ad (A)	Compulsive polydicystinosis Chronic glomerula dis test is the main and the perform osmotic w Secretory function	onephritis easure of capacity of the tubule to rork of liver		follo (A) (C) The solu (A) (B)	owing is Inulin Heparin predominant ution is	(B) (D) for	Cellulose Dextrin
58.	(B) (C) (D) Ad (A) (B) (C)	Compulsive polydic Cystinosis Chronic glomerula dis test is the main and the perform osmotic was secretory function Excretory function	onephritis easure of capacity of the tubule to ork of liver		follo (A) (C) The solu (A) (B)	Inulin Heparin predominant ution is Acyclic form Hydrated acyclic f	(B) (D) for	Cellulose Dextrin
58. 59.	(B) (C) (D) Ad (A) (B) (C) (D)	Compulsive polyder Cystinosis Chronic glomerula dis test is the management of the perform osmotic was Secretory function Excretory function Activity of parench	onephritis easure of capacity of the tubule to ork of liver	69.	(A) (C) The solution (A) (B) (C) (D)	Inulin Heparin predominant ution is Acyclic form Hydrated acyclic f Glucofuranose Glucopyranose L-isomer of mone	(B) (D) for	Cellulose Dextrin
	(B) (C) (D) Ad (A) (B) (C) (D)	Compulsive polyder Cystinosis Chronic glomerula dis test is the mail and a secretory function Excretory function Activity of parenal	onephritis easure of capacity of the tubule to rork of liver of liver hymal cells of liver	69.	(A) (C) The solu (A) (B) (C) (D)	Inulin Heparin Predominant Ition is Acyclic form Hydrated acyclic f Glucofuranose Glucopyranose L-isomer of monan body is	(B) (D) for	Cellulose Dextrin rm of glucose in
	(B) (C) (D) Ad (A) (B) (C) (D)	Compulsive polyce Cystinosis Chronic glomerula dis test is the ma Impairment of the perform osmotic w Secretory function Excretory function Activity of parenches the polyce of stereois	onephritis easure of e capacity of the tubule to ork of liver of liver enymal cells of liver	69.	(A) (C) The solution (A) (B) (C) (D) An I hum (A)	Inulin Heparin Predominant Ution is Acyclic form Hydrated acyclic f Glucofuranose Glucopyranose L-isomer of monoman body is L-fructose	(B) (D) for orm	Cellulose Dextrin The of glucose in a charide formed in L-Erythrose
59.	(B) (C) (D) Add (A) (B) (C) (D) Nur (A) (C)	Compulsive polycher Cystinosis Chronic glomerula dis test is the mail Impairment of the perform osmotic was Secretory function Excretory function Activity of parenal mber of stereois 4	onephritis easure of e capacity of the tubule to rork of liver of liver hymal cells of liver comers of glucose is (B) 8	69.	(A) (C) The solution (A) (B) (C) (D) An hum (A) (C)	Inulin Heparin Inulin Heparin Inulin Heparin Inulin Heparin Acyclic form Hydrated acyclic form Hydrated acyclic form Glucofuranose Glucopyranose L-isomer of monoman body is L-fructose L-Xylose	(B) (D) form	Cellulose Dextrin The of glucose in Charide formed in L-Erythrose L-Xylulose
59.	(B) (C) (D) Add (A) (B) (C) (D) Nur (A) (C) (Mal	Compulsive polycher Cystinosis Chronic glomerula dis test is the mail Impairment of the perform osmotic was Secretory function Excretory function Activity of parenal mber of stereois 4	easure of capacity of the tubule to ork of liver of liver nymal cells of liver comers of glucose is (B) 8 (D) None of these	69.	folia (A) (C) The solution (A) (B) (C) (D) An hur (A) (C) Hy	Inulin Heparin Predominant Ition is Acyclic form Hydrated acyclic f Glucofuranose Glucopyranose L-isomer of moninan body is L-fructose L-Xylose aluronic acid is	(B) (D) for (B) (D) four four (B) (D)	Cellulose Dextrin To of glucose in Charide formed in L-Erythrose L-Xylulose Ind in
59.	(B) (C) (D) Add (A) (B) (C) (D) Nur (A) (C) Mal (A)	Compulsive polycher Cystinosis Chronic glomerular C	pypsia pnephritis peasure of a capacity of the tubule to pork of liver of liver hymal cells of liver pomers of glucose is (B) 8 (D) None of these pned by hydrolysis of	69.	(A) (C) The soli (A) (B) (C) (D) An hur (A) (C) Hy (A)	Inulin Heparin Inulin Heparin Inulin Heparin Inulin Heparin Acyclic form Hydrated acyclic form Hydrated acyclic form Glucofuranose Glucopyranose L-isomer of monoman body is L-fructose L-Xylose	(B) (D) for (B) (B)	Cellulose Dextrin The of glucose in Charide formed in L-Erythrose L-Xylulose
59.	(B) (C) (D) Add (A) (B) (C) (D) Nur (A) (C) (A) (C)	Compulsive polyder Cystinosis Chronic glomerula dis test is the mail Impairment of the perform osmotic was Secretory function Excretory function Activity of parenches The performance of the performance o	proposition of the subule to cork of liver of li	69. 70.	folia (A) (C) The solu (A) (B) (C) (D) Anihur (A) (C) Hy (A) (C)	Inulin Heparin Inulin Heparin Inulin Heparin Inulin	(B) (D) for	Cellulose Dextrin To of glucose in Charide formed in L-Erythrose L-Xylulose Ind in Brain

(A) Glucagon

(C) Glucocorticoids

(B) Epinephrine

(D) Insulin

(A) Anomeric carbon atom 82. Lactate formed in muscles can be utilised through (B) Epimeric carbon atom (C) Isomeric carbon atom (A) Rapoport-Luebeling cycle (D) None of these Glucose-alanine cycle Cori's cycle 73. The smallest monosaccharide having Citric acid cycle furanose ring structure is (A) Erythrose (B) Ribose 83. Glucose-6-phosphatase is not present in (C) Glucose (D) Fructose (A) Liver and kidneys Kidneys and muscles 74. Which of the following is an epimeric pair? (C) Kidneys and adipose tissue (A) Glucose and fructose (D) Muscles and adipose tissue (B) Glucose and galactose (C) Galactose and mannose 84. Pyruvate carboxylase is regulated by (D) Lactose and maltose (A) Induction (B) Repression (C) Allosteric regulation(D) All of these 75. α-Glycosidic bond is present in (A) Lactose (B) Maltose 85. Fructose-2, 6-biphosphate is formed by the action of (C) Sucrose (D) All of these (A) Phosphofructokinase-1 76. Branching occurs in glycogen approxi-Phosphofructokinase-2 mately after every (C) Fructose biphosphate isomerase (A) Five glucose units (D) Fructose-1, 6-biphosphatase (B) Ten glucose units (C) Fifteen glucose units 86. The highest concentrations of fructose are found in (D) Twenty glucose units (A) Aqueous humor (B) Vitreous humor 77. N-Acetylglucosamnine is present in Synovial fluid (D) Seminal fluid (A) Hyaluronic acid (B) Chondroitin sulphate (D) All of these 87. Glucose uptake by liver cells is (C) Heparin (A) Energy-consuming (B) A saturable process 78. Iodine gives a red colour with (C) Insulin-dependent (D) Insulin-independent (A) Starch (B) Dextrin (C) Glycogen (D) Inulin 88. Renal threshold for glucose is decreased in 79. Amylose is a constituent of (A) Diabetes mellitus (B) Insulinoma (A) Starch (B) Cellulose (C) Renal glycosuria (D) Alimentary glycosuria (C) Glycogen (D) None of these 89. Active uptake of glucose is inhibited by 80. Synovial fluid contains (B) Phlorrizin (A) Ouabain (A) Heparin (C) Digoxin (D) Alloxan (B) Hyaluronic acid 90. Glucose-6-phosphatase is absent or (C) Chondroitin sulphate deficient in (D) Keratin sulphate (A) Von Gierke's disease 81. Gluconeogenesis is decreased by (B) Pompe's disease

(C) Cori's disease

(D) McArdle's disease

91. Debranching enzyme is absent in

- (A) Cori's disease
- (B) Andersen's disease
- (C) Von Gierke's disease
- (D) Her's disease

McArdle's disease is due to the deficiency of

- (A) Glucose-6-phosphatase
- (B) Phosphofructokinase
- (C) Liver phosphorylase
- (D) muscle phosphorylase

93. Tautomerisation is

- (A) Shift of hydrogen (B) Shift of carbon
- (C) Shift of both (D)
 - (D) None of these

94. In essential pentosuria, urine contains

- (A) D-Ribose
- (B) D-Xylulose
- (C) L-Xylulose
- (D) D-Xylose

95. Action of salivary amylase on starch leads to the formation of

- (A) Maltose
- (B) Maltotriose
- (C) Both of the above (D) Neither of these

96. Congenital galactosaemia can lead to

- (A) Mental retardation
- (B) Premature cataract
- (C) Death
- (D) All of the above

97. Uridine diphosphate glucose (UDPG) is

- (A) Required for metabolism of galactose
- (B) Required for synthesis of glucuronic acid
- (C) A substrate for glycogen synthetase
- (D) All of the above

98. Catalytic activity of salivary amylase requires the presence of

- (A) Chloride ions
- (B) Bromide ions
- (C) lodide ions
- (D) All of these

99. The following is actively absorbed in the intestine:

- (A) Fructose
- (B) Mannose
- (C) Galactose
- (D) None of these

An amphibolic pathway among the following is

- (A) HMP shunt
- (B) Glycolysis
- (C) Citirc acid cycle
- (D) Gluconeogenesis

101. Cori's cycle transfers

- (A) Glucose from muscles to liver
- (B) Lactate from muscles to liver
- (C) Lactate from liver to muscles
- D) Pyruvate from liver to muscles

102. Excessive intake of ethanol increases the ratio:

- (A) NADH: NAD+
- (B) NAD+: NADH
- (C) FADH₂: FAD
- (D) FAD: FADH₂

103. Ethanol decreases gluconeogenesis by

- (A) Inhibiting glucose-6-phosphatase
- (B) Inhibiting PEP carboxykinase
- (C) Converting NAD+ into NADH and decreasing the availability of pyruvate
- (D) Converting NAD+ into NADH and decreasing the availability of lactate

104. Glycogenin is

- (A) Uncoupler of oxidative phosphorylation
- (B) Polymer of glycogen molecules
- (C) Protein primer for glycogen synthesis
- (D) Intermediate in glycogen breakdown

105. During starvation, ketone bodies are used as a fuel by

- (A) Erythrocytes
- (B) Brain
- (C) Liver
- (D) All of these

106. Animal fat is in general

- (A) Poor in saturated and rich in polyunsaturated fatty acids
- (B) Rich in saturated and poor in polyunsaturated fatty acids
- (C) Rich in saturated and polyunsaturated fatty
- Poor in saturated and polyunsaturated fatty acids

107. In the diet of a diabetic patient, the recommended carbohydrate intake should preferably be in the form of

	(A)	Monosaccharides	(B)	Dissaccharides	116.	Hed	avy proteinurio	1 OCCL	ırs in	
	(C)	Polysaccharides	(D)	All of these			Acute glomerulo	•	tis	
108.	Obe	esity increases t	he ı	risk of			Acute pyeloneph Nephrosclerosis	ritis		
		Hypertension				(C)	• .	ome		
	٠,				117.		copolysacchari		ıre	
		Cardiovascular di All of these	seas	se			Hamopolysacch			
100			ost	common vitamin		(B)	' '	ırides		
		ciency is that of		Common viidiiiii		(C) (D)	Proteins Amino acids			
		Ascorbic acid		Folic acid	118.		nce-Jones prote	in pr	ecinitates at	
	(C)	Vitamin A	(D)	Vitamin D			20°–40° C	-	40–60° C	
110.				ed salt is recom-		(C)	60°-80° C	(D)	80°-100° C	
		nded for prevent Hypertension		Hyperthyroidism	119.	Ser	um cholesterol	is de	creased in	
		Endemic goitre		None of these			_		Thyrotoxicosis	
111.		•		take is generally	100		Myxoedema	, ,	Cretinism	
		ommended in		,	120.				igar formed as ion in HMP shu	
		Diabetes mellitus		Hypertension			Sedoheptulose		•	
		Cirrhosis of liver		Peptic ulcer		(C)	Glucoheptose	(D)	Mannoheptose	
112.	-	vuria can occur	in		121.		•		polysaccharide	e is
		Diabetes mellitus Diarrhoea					(C ₆ H ₁₂ O ₆) _n (C ₆ H ₁₂ O ₅) _n			
		Acute glomerulone	ephr	itis	122.		number of iso			
		High fever				(A)		(B)	_	
13.	Nor	mal specific gro	vity	y of urine is			12	(D)		
				1.012-1.024	123.	The	e epimers of gl	ucose	e is	
	(C)	1.025–1.034	(D)	1.035–1.045			Fructose		Galactose	
114.		cific gravity of u		e is raised in all of	104	(C)	Ribose		Deoxyribose	
		Diabetes mellitus	,		124.		ate shunt is	in ne	exose monoph) 5-
		Diabetes insipidus	5			(A)	D-Ribolose	(B)	D-Arobinose	
		Dehydration				(C)	D-xylose	(D)	D-lyxose	
	(D)	Acute glomerulone	ephr	itis	125.		=	_	drolytic product	of
115.	•		ırin	e is decreased in		٠,	Lactose Inulin		Maltose Starch	
		Diabetes mellitus			126					
		Acute glomerulone Diarrhoea	ephr	ITIS	126.		uced by	aict	s solution is r	101
	(D)	Chronic glomerulo	nep	hritis		(A)	Sucrose	(B)	Lactose	
		-				(C)	Maltose	(D)	Fructose	

127.	Glycosides are for	und in many	138.	The component of cartilage and cornea is
	(A) Vitamins	(B) Drugs		(A) Keratosulphate
	(C) Minerals	(D) Nucleoproteins		(B) Chondroitin sulphate
128.	Galactose on oxid	lation with conc. HNO ₃		(C) Cadmium sulphate(D) Antimony sulphate
		(B) Saccharic acid	139.	Benedict's test is less likely to give weakly
	(C) Saccharo Lacton	• •		positive results with concentrated urine due to the action of
129.	The distinguishing saccharides and d	g test between mono- issaccharides is		(A) Urea (B) Uric acid (C) Ammonium salts (D) Phosphates
	(A) Bial's test(C) Barfoed's test	• •	140.	Active transport of sugar is depressed by the agent:
130.	Cellulose is made	up of the molecules of		(A) Oxaloacetate (B) Fumarate
	(A) α-glucose	(B) β-glucose		(C) Malonate (D) Succinate
	(C) Both of the abov	• •	141.	The general test for detection of carbohydrates is
131.	-	oduces no color with		(A) lodine test (B) Molisch test
	(A) Cellulose	(B) Starch		(C) Barfoed test (D) Osazone test
	(C) Dextrin	(D) Glycogen	142.	Glucose absorption may be decreased in
132.	Glycogen structur between-glucose	e includes a branch in		(A) Oedema (B) Nephritis
	(A) 6–12	(B) 8–14		(C) Rickets (D) Osteomalitis
	(C) 6–10	(D) 12–18	143.	Glycogen synthetase activity is depressed
133.	Amylose contains	glucose units		(A) Glucose (B) Insulin
	(A) 100–200	(B) 200–300		(C) Cyclic AMP (D) Fructokinase
	(C) 300–400	(D) 500–600	144	The branching enzyme acts on the
134.	Each branch of interval of glucose	amylopectin is at an	177,	glycogen when the glycogen chain has been lengthened to between glucose units:
	(A) 14–20	(B) 24–30		(A) 1 and 6 (B) 2 and 7
	(C) 34–40	(D) 44–50		(C) 3 and 9 (D) 6 and 11
135.	N-acetylneuramin	ic acid is an example of	145.	Cyclic AMP is formed from ATP by the
	(A) Sialic acid(C) Glucuronic acid	(B) Mucic acid (D) Hippuric acid		enzyme adenylate cyclase which is activated by the hormone:
136.		ronic acid chondroitin		(A) Insulin (B) Epinephrine (C) Testosterone (D) Progesterone
	(A) Gluconic acid (C) Induronic acid	(B) Gulonic acid (D) Sulphonic acid	146.	Hexokinase has a high affinity for glucose than
127	• •	, , ,		(A) Fructokinase (B) Galactokinase
137.	3 11			(C) Glucokinase (D) All of the above
	(A) Lactose (C) Fructose	(B) Maltose (D) Mucose	147.	Dihydroxyacetone phosphate and glyceraldehyde-3-phosphate are intercoverted by

	(A) Triose isomerase(B) Phosphotriose isomerase(C) Diphosphotriose isomerase		156.	Which of the following metabolite integrates glucose and fatty acid metabolism?
		yacetone phosphorylase		(A) Acetyl CoA (B) Pyruvate (C) Citrate (D) Lactate
148.	Citrate is c	converted to isocitrate hich contains	by 1 <i>57</i> .	Cerebrosides consist of mostly of this sugar:
	(A) Ca ⁺⁺ (C) Zn ⁺⁺	(B) Fe ⁺⁺ (D) Mg ⁺⁺		(A) Glucose (B) Fructose (C) Galactose (D) Arabinose
149.	The reaction requires	n succinyl COA to succino	ate 158.	Glucose will be converted into fatty acids if the diet has excess of
	(A) CDP (C) GDP	(B) ADP (D) NADP+		(A) Carbohydrates (B) Proteins (C) Fat (D) Vitamins
150.	The carrier o	of the citric acid cycle is	159.	The purple ring of Molisch reaction is due
	(A) Succinate	, ,		to
	(C) Malate	(D) Oxaloacetate		(A) Furfural
151.	by UDP dehy	dized to UDP glucuronic ac ydrogenase in presence of		 (B) Furfural + α Napthol (C) °C Napthol (D) Furfurol + H₂SO₄ + α -Naphthol
	(A) FAD+ (C) NADP+	(B) NAD+ (D) ADP+	160	One of the following enzymes does not
152	` '	phosphorylated by galac		change glycogen synthase a to b.
132.	kinase to for			(A) Glycogen synthase kinases 3, 4, 5
		e-6-phosphate		(B) Ca ²⁺ calmodulin phosphorylase kinase
		e-1, 6 diphosphate		 (C) Ca²⁺ calmodulin dependent protein kinase (D) Glycogen phosphorylase a
	(C) Galactose (D) All of thes	e-1-phosphate se	161	
153.	• •	sion of alanine to glucose		In EM pathway-2-phosphoglycerate is converted to
	termed	non or alamino to glocoso		(A) Phospho enol pyruvate
	(A) Glycolysis			(B) Enol pyruvate
		e decarboxylation		(C) Di hydroxy acetone phosphate (DHAP)(D) 1,3 bisphosphoglycerate
	(C) Specific of (D) Gluconed	dynamic action	1/0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
154.	The blood	sugar raising action of t f suprarenal cortex is due	he	An aneplerotic reaction which sustains the availability of oxaloacetate is the carbo- xylation of
	(A) Gluconec	<u>-</u>		(A) Glutamate (B) Pyruvate
	(B) Glycogen			(C) Citrate (D) Succinate
	(C) Glucagor	n-like activity	163.	•
	(D) Due to inh	hibition of glomerular filtration		(A) Seliwanoff's test (B) Osazone test
155.		robic conditions the glycoly		(C) Molisch test (D) None of these
		glucose yields moles of A	TP. 164.	Two important byproducts of HMP shunt are
	(A) One	(B) Two (D) Thirty		(A) NADH and pentose sugars
	(C) Eight	נטן ווווווץ		(B) NADPH and pentose sugars

MCQs IN BIOCHEMISTRY $\overline{14}$

	(C) Pentose sugars and 4 membered sugars(D) Pentose sugars and sedoheptulose	172.	Conversion of glucose to glucose-6- phosphate in human liver is by
165.	Pyruvate dehydrogenase complex and α -ketoglutarate dehydrogenase complex require the following for their oxidative decarboxylation:		(A) Hexokinase only(B) Glucokinase only(C) Hexokinase and glucokinase(D) Glucose-6-phosphate dehydrogenase
166.	 (A) COASH and Lipoic acid (B) NAD+ and FAD (C) COASH and TPP (D) COASH, TPP, NAD+, FAD, Lipoate The four membered aldose sugar phosphate formed in HMP shunt pathway 	173.	The following is an enzyme required for glycolysis: (A) Pyruvate kinase (B) Pyruvate carboxylase (C) Glucose-6-phosphatose (D) Glycerokinase
	(A) Xylulose P (B) Erythrulose P (C) Erythrose P (D) Ribulose P	1 <i>7</i> 4.	The normal glucose tolerance curve reaches peak is (A) 15 min (B) 1 hr
167.	Cane sugar (Sucrose) injected into blood is		(C) 2 hrs (D) 2 ½ hrs
168.	 (A) changed to fructose (B) changed to glucose (C) undergoes no significant change (D) changed to glucose and fructose Pentose production is increased in	1/5.	Oxidative decarboxylation of pyruvate requires (A) NADP+ (B) Cytichromes (C) pyridoxal phosphate (D) COASH
100.	(A) HMP shunt	176.	Glucose tolerance is increased in
	(B) Uromic acid pathway (C) EM pathway		(A) Diabetes mellitus (B) Adrenalectomy (C) Acromegaly (D) Thyrotoxicosis
1/0	(D) TCA cycle	1 <i>77</i> .	Glucose tolerance is decreased in
109.	Conversion of Alanine to carbohydrate is termed: (A) Glycogenesis (B) Gluconeogenesis		(A) Diabetes mellitus(B) Hypopituitarisme(C) Addison's disease(D) Hypothyroidism
	(C) Glycogenolysis (D) Photosynthesis	1 <i>7</i> 8.	During glycolysis, Fructose 1,6 diphosphate is decomposed by the enzyme:
170.	The following is an enzyme required for glycolysis: (A) Pyruvate kinase (B) Pyruvate carboxylase (C) Glucose-6-phosphatase		(A) Enolase a(B) Fructokinase(C) Aldolase(D) Diphosphofructophosphatose
	(D) Glycerokinase	1 <i>7</i> 9.	The following enzyme is required for the
I 7 1.	Our body can get pentoses from		hexose monophosphate shunt pathways
	(A) Glycolytic pathway (B) Uromic acid pathway		(A) Glucose-6-phosphatase(B) Phosphorylase

(C) Aldolase

(D) Glucose-6-phosphate dehydrogenase

(B) Uromic acid pathway

(C) TCA cycle

(D) HMP shunt

following condition:

(A) Diabetes insipidus (B) Diabetes Mellitus

(C) Hypothyroidism (D) Liver diseases

180	monophosphate sh		189.	The oxidation of lactic acid to pyruvic acid requires the following vitamin derivative as the hydrogen carrier.
	(A) NAD+ specific(C) FAD specific	(B) NADP+ specific(D) FMN specific		(A) Lithium pyrophosphate (B) Coenyzme A
181.		onditions the glycolysis ose yieldsmoles		(C) NAD+ (D) FMN
	(A) One	(B) Two	190.	Physiological glycosuria is met with in
	(C) Eight	(D) Thirty		(A) Renal glycosuria
182.	phosphate by	verted to glucose-1-		(B) Alimentary glycosuria (C) Diabetes Mellitus
		e (B) Branching enzyme		(D) Alloxan diabetes
		(D) Phosphatase	191.	Two examples of substrate level phospho- rylation in EM pathway of glucose metab-
183.	involved in glycoly	ving is not an enzyme rsis?		olism are in the reactions of
	(A) Euolase (C) Hexokinase	(B) Aldolose (D) Glucose oxidase		(A) 1,3 bisphosphoglycerate and phosphoenol pyruvate
184.	. ,	cycle to be continuous		(B) Glucose-6 phosphate and Fructo-6-phosphate
	requires the regen			(C) 3 phosphoglyceraldehyde and phosphoenolpyruvate
	(A) Pyruvic acid(C) α-oxoglutaric acid	(B) oxaloacetic acid d (D) Malic acid		(D) 1,3 diphosphoglycerate and 2-phosphoglycerate
185.		of succinic acid to uires the following	192.	The number of molecules of ATP produced by the total oxidation of acetyl CoA in TCA cycle is
	(A) NAD+	(B) NADP⁺		(A) 6 (B) 8
	(C) flavoprotein	(D) Glutathione		(C) 10 (D) 12
186.	The tissues with the content are	highest total glycogen	193.	Substrate level phosphorylation in TCA cycle is in step:
	(A) Muscle and kidne	eys		(A) Isocitrate dehydrogenase
	(B) Kidneys and liver			(B) Malate dehydrogenase
	(C) Liver and muscle(D) Brain and Liver			(C) Aconitase (D) Succinate thiokinase
187.	Rothera test is not	given by	194.	Fatty acids cannot be converted into
1071	(A) β-hydroxy butyrate	e (B) bile salts		carbohydrates in the body as the following reaction is not possible.
	(C) Glucose	(D) None of these		(A) Conversion of glucose-6-phosphate into glucose
188.	Gluconeogenesis	is increased in the		(B) Fructose 1,6-bisphosphate to fructose-6-

phosphate

(C) Transformation of acetyl CoA to pyruvate

(D) Formation of acetyl CoA from fatty acids

195.		sues form lactic acid from glucose. This enomenon is termed as	202.	-	rlo 1,6 glucosion Branching enzym		e is called
		Aerobic glycolysis			debranching enzym		
		Oxidation		(C)	Glucantransferas	е	
		Oxidative phosphorylation Anaerobic glycolysis		(D)	Phosphorylase		
196.		e molecule of glucose gives	203.	Gluc	ose enters the	cell	s by
		lecules of CO ₂ in EM-TCA cycle.			insulin independe		•
	(A)	6 (B) 3			insulin dependent		•
	(C)	1 (D) 2			enzyme mediated Both (A) and (B)	ı tran	isport
197.		e molecule of glucose gives lecules of CO ₂ in one round of HMP ont.	204.	Gly	cogen while be		acted upon by ac-
	(A)	6 (B) 1			Glucose		
	(C)	2 (D) 3				hate	and Glycogen with 1
198.		e 4 rate limiting enzymes of			carbon less		
		coneogenesis are			Glucose-6-phospi carbon less	nate	and Glycogen with 1
	(A)	Glucokinase, Pyruvate carboxylae phosphoenol pyruvate carboxykinase and glucose-6-phosphatase		(D)	6-Phosphoglucon		
	(B)	Pyruvate carboxylase, phosphoenol pyruvate	205.		en O ₂ supply is enverted to	inac	dequate, pyruvate
		carboxykinase, fructose1,6 diphosphatase and glucose-6-phosphatase			Phosphopyruvate	(B)	Acetyl CoA
	(C)	Pyruvate kinase, pyruvate carboxylase,			Lactate		Alanine
	(D)	phosphoenol pyruvate carboxykinase and glucose-6-phosphatase	206.		tivation of ina is normally fa		e liver phosphory- red by
	(D)	Phospho fructokinase, pyruvate carboxylase, phosphoenol pyruvate carboxykinase and fructose 1, 6 diphosphatase			Insulin ACTH		Epinephrine Glucagon
199.		glycogenesis, Glucose should be conted to	207.		re pyruvic acid t be converted		ers the TCA cycle it
	(A)	Glucuronic acid (B) Pyruvic acid		(A)	Acetyl CoA	(B)	Lactate
	(C)	UDP glucose (D) Sorbitol		(C)	α-ketoglutarate	(D)	Citrate
200.	coly	oride inhibits and arrests gly- ysis.	208.	cata	lysed by a s	pec	ose-6-phosphate is ific phosphatase
		Glyceraldehyde-3-phosphate dehydrogenase Aconitase			ch is found only		ı
	(C)	Enolose			Liver, intestines ar Brain, spleen and		•
	(D)	Succinate dehydrogenase			Striated muscle	· aai	Citalo
201.	One	e of the following statement is correct:			Plasma		
	(A)	Glycogen synthase 'a' is the phosphorylated	209.	The	formation of	cit	rate from oxalo
	(B)	cAMP converts glycogen synthase b to 'a'			ate and acetyl	CoA	\ is
	(C) (D)	Insulin converts glycogen synthase b to a UDP glucose molecules interact and grow into		` '	Oxidation		Reduction
	(1)	a Glycogen tree		(C)	Condensation	(D)	Hydrolysis

210.	Which one of the limiting enzyme of g	following is a rate pluconeogenesis?	218.	Ace of	Acetyl CoA is not used for the synthe of			ynthesis
	(A) Hexokinase(B) Phsophofructokinas(C) Pyruvate carboxyla(D) Pyruvate kinase		219.	(C)	Fatty acid Pyruvic acid total glycogen	(D)	Citric acid	
211.	The number of AT succinate dehydroge			(A)	100 300		200 500	
	(A) 1 (B) 2 (C) 3 (D) 4			The total Glucose in the body isgms.				
212.	Which of the follow lactose?	wing reaction gives			10–15 40–50		20–30 60–80	
	(A) UDP galactose and g(B) UDP glucose and g(C) Glucose and Galactose(D) Glucose, Galactose	galactose ctose	221.	ma (A)	ruvate kinase r ximum activity. Na ⁺ Ca2 ⁺	(B)		ions for
213.	UDP Glucuronic acid is required for the biosynthesis of			ATP is 'wasted' in Rapoport-Lueberring cycle in RBCs as otherwise it will inhibit				
	(A) Chondroitin sulphat(B) Glycogen(C) Lactose(D) Starch	tes		(B) (C)	 (A) Phosphoglucomutase (B) Phosphohexo isomerase (C) Phosphofructo kinase (D) Phosphoenol pyruvate carboxy kinase 			
214.	Which one of the following can covert glucose to vitamin C?			The following co-enzyme is needed for the oxidative decarboxylation of ketoacids:				
	• •	(B) Humans (D) Guinea pigs		(A)	NADP+ Folate coenzyme	(B)	TPP	
215.	Which one of the folloglucose to Vitamin C		224.		nthesis of Gluco med as	Glucose from amino acids		acids is
	, ,	(B) Dogs (D) Cows			Glycolysis Glycogenesis			
	(C) TPP Two conditions in wh	(B) FP (D) Pyridoxol phosphate		het (A) (C)	e following exc eropolysacchar Amylopectin Peptidoglycan	(B) (D)	except Heparin Hyaluronia	c acid
	 is increased are (A) Diabetes mellitus and atherosclerosis (B) Fed condition and thyrotoxicosis (C) Diabetes mellitus and Starvation (D) Alcohol intake and cigarette smoking 			Which of the following features are common to monosaccharides? (A) Contain asymmetric centres (B) Are of 2 types – aldoses and ketoses (C) Tend to exist as ring structures in solution (D) Include glucose, galactose and raffinose				

227. Polysaccharides

- (A) Contain many monosaccharide units which may or may not be of the same kind
- (B) Function mainly a storage or structural compounds
- (C) Are present in large amounts in connective tissue
- (D) All of these

228. The absorption of glucose in the digestive

- (A) Occurs in the small intestine
- (B) Is stimulated by the hormone Glucagon
- (C) Occurs more rapidly than the absorption of any other sugar
- (D) Is impaired in cases of diabetes mellitus

229. UDP-Glucose is converted to UDP-Glucuronic acid by

- (A) ATP
- (B) GTP
- (C) NADP+
- (D) NAD+

230. The enzymes involved in Phosphorylation of glucose to glucose 6- phosphate are

- (A) Hexokinase
- (B) Glucokinase
- (C) Phosphofructokinase
- (D) Both (A) and (B)

231. In conversion of Lactic acid to Glucose, three reactions of Glycolytic pathway are circumvented, which of the following enzymes do not participate?

- (A) Pyruvate Carboxylase
- (B) Phosphoenol pyruvate carboxy kinase
- (C) Pyruvate kinase
- (D) Glucose-6-phosphatase

232. The normal resting state of humans, most of the blood glucose burnt as "fuel" is consumed by

- (A) Liver
- (B) Brain
- (C) Kidneys
- (D) Adipose tissue

233. A regulator of the enzyme Glycogen synthase is

- (A) Citric acid
- (B) 2, 3 bisphosphoglycerate
- (C) Pyruvate
- (D) GTP

234. Which of the following compound is a positive allosteric modifier of the enzyme pyruvate carboxylase?

- (A) Biotin
- (B) Acetyl CoA
- (C) Oxaloacetate (D) ATP

235. A specific inhibitor for succinate dehydrogenase is

- (A) Arsinite
- (B) Melouate
- (C) Citrate
- (D) Cyanide

236. Most of the metabolic pathways are either anabolic or catabolic. Which of the following pathways is considered as "amphibolic" in nature?

- (A) Glycogenesis
- (B) Glycolytic pathway
- (C) Lipolysis
- (D) TCA cycle

237. Transketolase activity is affected in

- (A) Biotin deficiency
- (B) Pyridoxine deficiency
- (C) PABA deficiency
- (D) Thiamine deficiency

238. The following metabolic abnormalities occur in Diabetes mellitus except

- (A) Increased plasma FFA
- (B) Increased pyruvate carboxylase activate
- (C) Decreased lipogenesis
- (D) Decreased gluconeogenesis

239. A substance that is not an intermediate in the formation of D-glucuronic acid from glucose is

- (A) Glucoss-1-p
- (B) 6-Phosphogluconate
- (C) Glucose-6-p
- (D) UDP-Glucose

240. The hydrolysis of Glucose-6-P is catalysed by a phosphatase that is not formed in which of the following?

- (A) Liver
- (B) Kidney
- (C) Muscle
- (D) Small intestine

241. An essential for converting Glucose to Glycogen in Liver is

- (A) Lactic acid
- (B) GTP
- (C) CTP
- (D) UTP

242.	Which of the following is a substrate for
	aldolase activity in Glycolytic pathway?

- (A) Glyceraldehyde-3-p
- (B) Glucose-6-p
- (C) Fructose-6-p
- (D) Fructose 1, 6-bisphosphate
- 243. The ratio that approximates the number of net molecule of ATP formed per mole of Glucose oxidized in presence of O₂ to the net number formed in abscence of O₂ is
 - (A) 4:1
- (B) 10:2
- (C) 12:1
- (D) 18:1

244. The "Primaquin sensitivity types of haemolytic anaemia has been found to relate to reduced R.B.C activity of which enzyme?

- (A) Pyruvate kinase deficiency
- (B) Glucose-6-phosphatase deficiency
- (C) Glucose-6-p dehydrogenase deficiency
- (D) Hexokinase deficiency

245. Which of the following hormones is not involved in carbohydrate metabolism?

- (A) Cortisol
- (B) ACTH
- (C) Glucogen
- (D) Vasopressin

246. Dehydrogenases involved in HMP shunt are specific for

- (A) NADP+
- (B) NAD+
- (C) FAD
- (D) FMN

247. Which of the following enzymes in Glycolytic pathway is inhibited by fluoride?

- (A) Glyceraldehyde-3-p dehydrogenase
- (B) Phosphoglycerate kinase
- (C) Pyruvate kinase
- (D) Enolase

248. Out of 24 mols of ATP formed in TCA cycle, 2 molecules of ATP can be formed at "substrate level" by which of the following reaction?

- (A) Citric acid→ Isocitric acid
- (B) Isocitrate→ Oxaloacetate
- (C) Succinic acid→ Fumarate
- (D) Succinylcat -> Succinic acid

249. Which of the following statements regarding T.C.A cycle is true?

- (A) It is an anaerobic process
- (B) It occurs in cytosol
- (C) It contains no intermediates for Gluconeogenesis
- (D) It is amphibolic in nature

250. An allosteric enzyme responsible for controlling the rate of T.C.A cycle is

- (A) Malate dehydrogenase
- (B) Isocitrate dehydrogenase
- (C) Fumarase
- (D) Aconitase

251. The glycolysis is regulated by

- (A) Hexokinase
- (B) Phosphofructokinase
- (C) Pyruvate kinase
- (D) All of these

252. How many ATP molecules will be required for conversion of 2-molecules of Lactic acid to Glucose?

- (A) 2
- (B) 4
- (C) 8
- (D) 6

253. Which of the following enzyme is not involved in HMP shunt?

- (A) Glyceraldehyde-3-p dehydrogenase
- (B) Glucose-6-p-dehydrogenase
- (C) Transketolase
- (D) Phosphogluconate dehydrogenase

254. In presence of the following cofactor, pyruvate carboxylase converts pyruvate to oxaloacetate:

- (A) ATP, Protein and CO₂
- (B) CO₂ and ATP
- (C) CO₂
- (D) Protein

255. For conversion of oxaloacetate to phosphoenol pyruvate, high energy molecule is required in the form of

- (A) GTP only
- (B) ITP only
- (C) GTP (or) ITP
- (D) None of these

256. If the more negative standard reduction potential of a redox pair, the greater the tendency to

- (A) To lose electrons
- (B) To gain electrons
- (C) To lose/gain electrons
- (D) To lose and gain electrons

257. Electron transport and phosphorylation can be uncoupled by compounds that increase the permeability of the inner mitochondrial membrane to

- (A) Electrons
- (B) Protons
- (C) Uncouplers
- (D) All of these

258. The more positive the $E_{o'}$ the greater the tendency of the oxidant member of that pair to

- (A) Lose electrons
- (B) Gain electrons
- (C) Lose (or) gain electrons
- Lose and gain electrons

259. The standard free energy of hydrolysis of terminal phosphate group of ATP is

- (A) -7,300 cal/mol
- (B) -8,300 cal/mol
- (C) 10,000 cal/mol (D) +7,300 cal/mol

260. The transport of a pair of electrons from NADH to O₂ via the electron transport chain produces

- (A) -52,580 cal
- (B) -50,580 cal
- (C) 21,900 cal
- (D) +52,580 cal

261. Sufficient energy required to produce 3 ATP from 3 ADP and 3 pi is

- (A) -21,900 cal
- (B) 29,900 cal
- (C) 31,900 cal
- (D) 39,900 cal

262. The free energy change, AG

- (A) Is directly proportional to the standard free energy change, AG
- (B) Is equal to zero at equilibrium
- (C) Can only be calculated when the reactants and products are present at 1mol/1 concentrations
- (D) Is equal to -RT in keq

263. Under standard conditions

- (A) The free energy change ΔG° , is equal to 0
- (B) The standard free energy change ΔG , is equal to 0

- The free energy change, ΔG° , is equal to the standard free energy change, ΔG°
- Keg is equal to 1

264. An uncoupler of oxidative phosphorylation such as dinitrophenol

- (A) Inhibits electron transport and ATP synthesis
- Allow electron transport to proceed without ATP synthesis
- Inhibits electron transport without impairment of ATP synthesis
- (D) Specially inhibits cytochrome b

All of the following statements about the **265.** enzymic complex that carries out the synthesis of ATP during oxidative phosphorylation are correct except

- (A) It is located on the matrix side of the inner mitochondrial membrane
- It is inhibited by oligomycin
- It can exhibit ATPase activity
- (D) It can bind molecular O₂

266. Glucokinase

- (A) Is widely distributed and occurs in most mammalian tissues
- Has a high $k_{\scriptscriptstyle m}$ for glucose and hence is important in the phosphorylation of glucose primarily after ingestion of a carbohydrate rich meal
- (C) Is widely distributed in Prokaryotes
- (D) None of these

267. The reaction catalysed by phosphofructokinase

- (A) Is activated by high concentrations of ATP and citrate
- (B) Uses fruitose-1-phosphate as substrate
- (C) Is the rate-limiting reaction of the glycolytic pathway
- Is inhibited by fructose 2, 6-bisphosphate

268. Compared to the resting state, vigorously contracting muscle shows

- (A) An increased conversion of pyruvate to lactate
- Decreased oxidation of pyruvate of CO₂ and
- (C) A decreased NADH/NAD+ ratio
- (D) Decreased concentration of AMP

269. Which one of the following would be expected in pyruvate kinase deficiency?

- (A) Increased levels of lactate in the R.B.C
- (B) Hemolytic anemia
- (C) Decreased ratio of ADP to ATP in R.B.C
- (D) Increased phosphorylation of Glucose to Glucose-6-phosphate

270. Which one of the following statements concerning glucose metabolism is correct?

- (A) The conversion of Glucose to lactate occurs only in the R.B.C
- (B) Glucose enters most cells by a mechanism in which Na⁺ and glucose are co-transported
- (C) Pyruvate kinase catalyses an irreversible reaction
- (D) An elevated level of insulin leads to a decreased level of fructose 2, 6-bisphosphate in hepatocyte

271. Which one of the following compounds cannot give rise to the net synthesis of Glucose?

- (A) Lactate
- (B) Glycerol
- (C) α-ketoglutarate (D) Acetyl CoA

272. Which of the following reactions is unique to gluconeogenesis?

- (A) Lactate Pyruvate
- (B) Phosphoenol pyruvate pyruvate
- (C) Oxaloacetate phosphoenol pyruvate
- (D) Glucose-6-phosphate Fructose-6-phosphate

273. The synthesis of glucose from pyruvate by gluconeogenesis

- (A) Requires the participation of biotin
- (B) Occurs exclusively in the cytosol
- (C) Is inhibited by elevated level of insulin
- (D) Requires oxidation/reduction of FAD

274. The conversion of pyruvate to acetyl CoA and CO₂

- (A) Is reversible
- (B) Involves the participation of lipoic acid
- (C) Depends on the coenzyme biotin
- (D) Occurs in the cytosol

275. Pasteur effect is

- (A) Inhibition of glycolysis
- (B) Oxygen is involved
- (C) Inhibition of enzyme phosphofructokinase
- (D) All of these

276. How many ATPs are produced in the conversion of phosphoenol pyruvate to citrate?

- (A)
- (B) 2
- (C) 4
- (D) 6

277. Reduced glutathione functions in R.B.Cs to

- (A) Produce NADPH
- (B) Reduce methemoglobin to hemoglobin
- (C) Produce NADH
- (D) Reduce oxidizing agents such as H₂O₂

278. Phenylalanine is the precursor of

- (A) L-DOPA
- (B) Histamine
- (C) Tyrosine
- (D) Throxine

279. D-Mannose is present in some plant products like

- (A) Resins
- (B) Pectins
- (C) Mucilage
- (D) Gums

280. Galactose is a main constituent of

- (A) Milk sugar
- (B) Honey
- (C) Cane sugar
- (D) Chitin

281. Glucosamine is an important constituent of

- (A) Homopolysaccharide
- (B) Heteropolysaccharide
- (C) Mucopolysaccharide
- (D) Dextran

282. Glycogen is present in all body tissues except

- (A) Liver
- (B) Brain
- (C) Kidney
- (D) Stomach

283. Iodine test is positive for starch, dextrin and

- (A) Mucoproteins
- (B) Agar
- (C) Glycogen
- (D) Cellulose

The	general formula	fo	r polysaccharide is	294.		-Glucose and β-	D-g	lucose are related
(C)	$(C_6H_{12}O_5)_n$	(D)	. 0 12 0.11		(A)		٠,	Anomers Ketoenol pair
•	•			005	` '			·
(A) (C)	Fructose Ribose	٠,		295.				
Hur	man heart muscl	e c	ontains		٠,		, ,	C-1 and C-2
(A)	D-Arabinose	(B)	D-Ribose					C-2 and C-5
(C)	D-Xylose	(D)	L-Xylose	296.			se v	with Ca ⁺⁺ in water
		h e	exose monophos-		(A)	Sorbitol	٠,	Dulcitol Glucuronic acid
				007				
` '	,		,	297.				
		ict′	s solution is not				. ,	Mannose Galactose
		. ,		298.	Rec to	lucing ability of	car	bohydrates is due
				299.			ving	j is not a polymer
Bar	foed's solution i	s no	ot reduced by		(A)	Amylose	(B)	Inulin
(A)	Glucose	(B)	Mannose		(C)	Cellulose	(D)	Dextrin
(C)	Sucrose	(D)	Ribose	300.	300. Invert sugar is			
Cor	i cycle is				(A)	Lactose		
	,	e						
	•				٠,			
				001				
		n c	15	301	The carbohydrate reserved in human body is			
		٠,					٠,	Glucose Inulin
Wh	ich of the follo			302		, •	` '	
sugar?							, ,	
							' '	Sucrose Maltose
	(A) (C) Epii (A) (C) Hur (A) (C) The pho (A) (C) The cha (A) (C) Bar (A) (C) Cor (A) (B) (C) (D) Car (A) (C) Wh sug (A)	(A) (C ₆ H ₁₀ O ₅) _n (C) (C ₆ H ₁₂ O ₅) _n Epimers of glucose is (A) Fructose (C) Ribose Human heart muscl (A) D-Arabinose (C) D-Xylose The intermediate in phate shunt is (A) D-Ribulose (C) D-xylose On boiling Benedireduced by (A) Sucrose (C) Maltose The distinguishing techarides and dissace (A) Bial's test (C) Barfoed's test Barfoed's solution is (A) Glucose (C) Sucrose Cori cycle is (A) Synthesis of glucose (B) reuse of glycose (C) uptake of glycose (D) Both (A) & (B) Cane sugar is known (A) Galactose (C) Fructose Which of the follow	(A) (C ₆ H ₁₀ O ₅) _n (B) (C) (C ₆ H ₁₂ O ₅) _n (D) Epimers of glucose is (A) Fructose (B) (C) Ribose (D) Human heart muscle co (A) D-Arabinose (B) (C) D-Xylose (D) The intermediate n he phate shunt is (A) D-Ribulose (B) (C) D-xylose (D) On boiling Benedict's reduced by (A) Sucrose (B) (C) Maltose (D) The distinguishing test be charides and dissacched (A) Bial's test (D) Barfoed's solution is not (A) Glucose (B) (C) Sucrose (D) Cori cycle is (A) Synthesis of glucose (D) Cori cycle is (A) Galactose (B) (C) Fructose (D) Which of the following sugar? (A) Lactose (B)	Epimers of glucose is (A) Fructose (B) Galactose (C) Ribose (D) Deoxyribose Human heart muscle contains (A) D-Arabinose (B) D-Ribose (C) D-Xylose (D) L-Xylose The intermediate n hexose monophosphate shunt is (A) D-Ribulose (B) D-Arabinose (C) D-xylose (D) D-Lyxose On boiling Benedict's solution is not reduced by (A) Sucrose (B) Lactose (C) Maltose (D) Fructose The distinguishing test between monosaccharides and dissaccharide is (A) Bial's test (B) Seliwanoff's test (C) Barfoed's solution is not reduced by (A) Glucose (B) Mannose (C) Sucrose (D) Ribose Cori cycle is (A) Synthesis of glucose (B) reuse of glycose (C) uptake of glycose (D) Both (A) & (B) Cane sugar is known as (A) Galactose (B) Sucrose (C) Fructose (D) Maltose Which of the following is not reducing sugar? (A) Lactose (B) Maltose	(A) (C ₆ H ₁₀ O ₅) _n (B) (C ₆ H ₁₂ C ₆) _n (C) (C ₆ H ₁₂ O ₅) _n (D) (C ₅ H ₁₀ O ₅) _n Epimers of glucose is (A) Fructose (B) Galactose (C) Ribose (D) Deoxyribose Human heart muscle contains (A) D-Arabinose (B) D-Ribose (C) D-Xylose (D) L-Xylose (C) D-Xylose (D) L-Xylose (C) D-Xylose (D) D-L-Yylose (C) D-Xylose (D) P-Yylose (C) Maltose (D) Fructose The distinguishing test between monosaccharides and dissaccharide is (A) Bial's test (B) Seliwanoff's test (C) Barfoed's solution is not reduced by (A) Glucose (B) Mannose (C) Sucrose (D) Ribose (C) Sucrose (D) Ribose (C) uptake of glycose (D) Both (A) & (B) Cane sugar is known as (A) Galactose (B) Sucrose (C) Fructose (D) Maltose Which of the following is not reducing sugar? (A) Lactose (B) Maltose	(A) (C ₆ H ₁₀ O ₅) _n (B) (C ₆ H ₁₂ C ₆) _n (A) (C) (C ₆ H ₁₂ O ₅) _n (D) (C ₅ H ₁₀ O ₅) _n (A) (A) (C) (C ₆ H ₁₂ O ₅) _n (D) (C ₅ H ₁₀ O ₅) _n (A) (A) (C) (C) (C ₆ H ₁₂ O ₅) _n (D) (C ₅ H ₁₀ O ₅) _n (A) (A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	(A) (C ₆ H ₁₀ O ₅ _n (B) (C ₆ H ₁₂ C ₆) _n (C) (C ₆ H ₁₂ O ₅ _n (D) (C ₅ H ₁₀ O ₅) _n (D) (C ₅ H ₁₀ O ₅) _n (A) Epimers (C) Multirotation	(A) (C _o H ₁₀ O _s) _n (B) (C _o H ₁₂ C _o) _n (D) (C _s H ₁₀ O _s) _n (D) (C _s H ₁₀ O _s) _n (E) (C _o H ₁₂ O _s) _n (D) (C _s H ₁₀ O _s) _n (E) (C _o H ₁₂ O

_	

ANSWERS									
1. A	2. A	3. A	4. A	5. B	6. A				
7. A	8. D	9. A	10. A	11. A	12. C				
13.B	14. A	15. A	16. B	17. A	18. A				
19. C	20. C	21. A	22. D	23. C	24. B				
25. A	26. D	27. C	28. C	29. B	30. B				
31. D	32. A	33. C	34. B	35. B	36. B				
37. C	38. B	39. D	40. A	41. D	42. B				
43. A	44. B	45. A	46. A	47. A	48. A				
49. B	50. C	51. C	52. A	53. A	54. A				
55. B	56. A	57. D	58. A	59. C	60. D				
61. C	62. C	63. B	64. C	65. C	66. C				
67. B	68. C	69. D	70. D	71. A	72. A				
73. B	74. B	75. B	76. B	77. A	78. C				
<i>7</i> 9. A	80. B	81. D	82. C	83. D	84. D				
85. B	86. D	87. D	88. C	89. B	90. A				
91. A	92. D	93. A	94. C	95. C	96. D				
97. D	98. A	99. C	100. C	101.B	102. A				
103. C	104. C	105. B	106. B	107. C	108. D				
109. B	110. C	111.B	112.B	113. B	114. D				
115. B	116. B	117. A	118.B	119. B	120. A				
121. B	122. D	123. B	124. A	125. C	126. A				
127. B	128. D	129. C	130. A	131. A	132. D				
133. C	134. B	135. C	136. C	137. C	138. A				
139. B	140. C	141. B	142. A	143. C	144. D				
145. B	146. C	147. B	148. B	149. B	150. D				
151.B	152. C	153. D	154. A	155. B	156. A				
1 <i>57</i> . C	158. A	159. B	160. D	161. A	162. B				
163. A	164. B	165. D	166. C	167. C	168. A				
169. B	170. A	171. D	172. C	173. A	174. B				
175. D	176. B	177. A	178. C	179. D	180. B				
181.B	182. C	183. D	184. B	185. C	186. C				
187. A	188. B	189. C	190. B	191. A	192. D				
193. D	194. C	195. D	196. A	197. B	198. B				
199. C	200. C	201. C	202. B	203. D	204. C				
205. C	206. D	207. A	208. A	209. C	210. C				
211.B	212. A	213. A	214. A	215. C	216. C				
217. C	218. C	219. C	220. B	221.B	222.C				
223. B	224. B	225. A	226. C	227. D	228. A				
229. B	230. D	231. C	232. B	233. C	234. A				
235. B	236. D	237. B	238. B	239. B	240. C				
241. D	242. D	243. B	244. C	245. D	246. A				
247. D	248. D	249. D	250. B	251. D	252. D				

253. A	254. A	255. C	256. A	257. B	258. B
259. A	260. D	261. A	262. B	263. C	264. B
265. D	266. B	267. C	268. A	269. B	270. C
271.B	272. C	273. A	274. B	275. D	276. C
277. D	278. C	279. D	280. A	281. C	282. B
283. C	284. A	285. B	286. C	287. A	288. A
289. C	290. C	291. D	292. B	293. C	294. B
295. C	296. A	297. C	298. A	299. B	300. D
301. C	302. D				

EXPLANATIONS FOR THE ANSWERS

- 7. A Polysaccharides are polymers of monosaccharides. They are of two types— hompolysaccharides that contain a single type of monosaccharide (e.g., starch, insulin, cellulose) and heteropolysaccharides with two or more different types of monosaccharides (e.g., heparin, chondroitin sulfate).
- 30. B Mutorotation refers to the change in the specific optical rotation representing the interconversion of α- and β- anomers of D-glucose to an equilibrium.
- 48. A Starch is a polysaccharide composed of D-glucose units held together by α-glycosidic bonds, (α 1→ 4 linkages; at branching points α 1→ 6 linkages).
- 71. A Hyaluronic acid is the ground substance of synovial fluid of joints. It serves as lubricants and shock absorbant in joints.
- 93. A The process of shifting a hydrogen atom from one carbon to another to produce enediols is referred to as tautomerization.
- 117. A Mucopolysaccharides (commonly known as glycosaminoglycans) are heteropolysaccharides composed of sugar derivatives (mainly amino sugars and uronic acids). The important mucopolysaccharides include hyaluronic acid, heparin, chondroitin sulfate, dermatan sulfate and keratan sulfate.
- 141. B Molisch test: It is a general test for the detection of carbohydrates. The strong H₂SO₄ hydrolyses carbohydrates (poly- and disaccharides) to liberate monosaccharides. The monosaccharides

- get dehydrated to form furfural (from pentoses) or hydroxy methylfurfural (from hexoses) which condense with α -naphthol to form a violet coloured complex.
- 163. A Seliwanoff's test: this is a specific test for ketohexoses. Concentrated hydrochloric acid dehydrates ketohexoses to form furfural derivatives which condense with resorcinol to give a cherry red complex.
- 187. A *Rothera's test:* Nitroprosside in alkaline medium reacts with keto group of ketone bodies (acetone and acetoacetate) to form a purple ring. This test is not given by β-hydroxybutyrate.
- 203. D Two specific transport systems are recognized for the entry of glucose into the cells.
 - (a) Insulin-independent transport: This is a carrier mediated uptake of glucose which is not dependent on the hormone inslulin. This operates in hepatocytes, erythrocytes and brain.
 - (b) Insulin-dependent transport: This occurs in muscle and adipose tissue.
 - 230. D Hexokinase and glucokinase are involved in the phosphorylation of glucose to glucose 6-phosphate. The enzyme hexokinase, present in almost all the tissues, catalyses the phosphorylation of other hexose also (fructose, mannose). It has low K_m for substrates (about 0.1 mM) and is inhibited by glucose 6-phosphate. In contrast, glucokinase is present in liver, catalyses the phosphorylation of only glucose, has high K_m for glucose (10 mM)

- and is not inhibited by glucose 6-phosphate.
- 251. D The three enzymes namely hexokinase (or glucokinase), phosphofructokinase and pyruvate kinase, catalyzing the irreversible reactions regulate glycolysis. Among these, phosphofructokinase is the most regulatory. It is an allosteric enzyme inhibited by ATP, citrate and activated by AMP and Pi.
- 275. D The inhibition of glycolysis by oxygen is
- referred to as Pasteur effect. This is due to inhibition of the enzyme phosphofructokinase by ATP and citrate (formed in the presence of O_2)
- 291. D The cycle involving the synthesis of glucose in liver from the skeletal muscle lactate and the reuse of glucose thus synthesized by the muscle for energy purposes is known as Cori Cycle.

This page intentionally left blank

CHAPTER 3

PROTEINS AND PROTEIN METABOLISM

All proteins contain the	(D) All amino acids contain negatively charged
(A) Same 20 amino acids	side chains
(B) Different amino acids	6. pH (isoelectric pH) of alanine is
(C) 300 Amino acids occurring in nature	(A) 6.02 (B) 6.6

- 2. Proteins contain
 - (A) Only L- α amino acids

(D) Only a few amino acids

- (B) Only D-amino acids
- (C) DL-Amino acids
- (D) Both (A) and (B)
- 3. The optically inactive amino acid is
 - Glycine
- (B) Serine
- (C) Threonine
- (D) Valine
- 4. At neutral pH, a mixture of amino acids in solution would be predominantly:
 - (A) Dipolar ions
 - (B) Nonpolar molecules
 - (C) Positive and monovalent
 - (D) Hydrophobic
- 5. The true statement about solutions of amino acids at physiological pH is
 - (A) All amino acids contain both positive and negative charges
 - (B) All amino acids contain positively charged side chains
 - (C) Some amino acids contain only positive charge

- (D) 7.2 (C) 6.8
- 7. Since the pK values for aspartic acid are 2.0, 3.9 and 10.0, it follows that the isoelectric (pH) is
 - (A) 3.0
- (B) 3.9
- (C) 5.9
- (D) 6.0
- 8. Sulphur containing amino acid is
 - (A) Methionine
- (B) Leucine
- Valine
- (D) Asparagine
- 9. An example of sulphur containing amino acid is
 - (A) 2-Amino-3-mercaptopropanoic acid
 - (B) 2-Amino-3-methylbutanoic acid
 - (C) 2-Amino-3-hydroxypropanoic acid
 - (D) Amino acetic acid
- 10. All the following are sulphur containing amino acids found in proteins except
 - (A) Cysteine
- (B) Cystine
- (C) Methionine
- (D) Threonine
- 11. An aromatic amino acid is
 - (A) Lysine
- (B) Tyrosine
- (C) Taurine
- (D) Arginine

12.	The	functions of p	lasm	a albumin are	21.			ıt do	es not form an α
	. ,	Osmosis	, ,	Transport			ix is		
	(C)	Immunity	(D)	both (A)and (B)			Valine		Proline
13.			side	chain containing		(C)	Tyrosine	(D)	Tryptophan
	bas	sic groups is			22.	An	amino acid no	fou	nd in proteins is
		2-Amino 5-guar				(A)	β-Alanine	(B)	Proline
		2-Pyrrolidine ca	•			(C)	Lysine	(D)	Histidine
		2-Amino 3-mero 2-Amino propar		•	23.		mammalian tis synthetic precu		s serine can be c of
14.				o acid not present		(A)	Methionine	(B)	Glycine
			ssent	ial in mammalian		(C)	Tryptophan	(D)	Phenylalanine
	(A)	3-Amino 3-hydro		•	24.				and is produced by the amino acid:
	(C)	2-Amino 3-hydro 2-Amino 4-mero	aptob	utanoic acid			Arginine Glutamine		Aspartic acid Histidine
	(D)			·	25.	Biu	ret reaction is s	peci	fic for
15.		essential amir Aspartate		d in man is Tyrosine			-CONH-linkage:		
	(C)	Methionine	(D)	Serine	04				
16.	No	n essential am	ino a	cids	20.		caguchi's reacti		•
	(A)	Are not compon	ents o	f tissue proteins		(A) (C)	Tyrosine Arginine		Proline Cysteine
) May be synthesized in the body from essential					· ·		,
		amino acids		1 1	2/.		lion-Nasse's red ino acid:	oito	n is specific for the
		Have no role in					Tryptophan	(B)	Tyrosine
	(U)	states	izea ii	n the body in diseased		(C)			Arginine
1 <i>7</i> .		nich one of the		llowing is semi- or humans?	28.		hydrin with ev e complex with		on of CO ₂ forms o
	(A)	Valine	(B)	Arginine		(A)	Peptide bond	(B)	lpha -Amino acids
		Lysine		Tyrosine		(C)	Serotonin	(D)	Histamine
18.	Δn	example of po	olar a	mino acid is	29.	The	most of the ul	travi	olet absorption o
		Alanine		Leucine					m is due to their
		Arginine		Valine			itent of		
10		-		onpolar side chain			Tryptophan		
17.	is	diffilio acia wi	iii a i	ionpoiar side chain			Glutamate	` '	Alanine
	(A)	Serine	(B)	Valine	30.	Wh	ich of the follo	_	is a dipeptide?
	(C)	Asparagine	(D)	Threonine		(A)	Anserine	(B)	Glutathione
20.	Αk	etogenic amin	o aci	d is		(C)	Glucagon	(D)	β -Lipoprotein
		Valine		Cysteine	31.	Wh	ich of the follo	wing	is a tripeptide?
	(C)	Leucine		Threonine			Anserine	_	Oxytocin
						(C)	Glutathione		Kallidin

32.	A peptide which muscle hypotens	acts as potent smooth ive agent is	43.	The amino acid from which synthesis o the protein of hair keratin takes place is
	(A) Glutathione (C) Tryocidine	(B) Bradykinin (D) Gramicidin-s		(A) Alanine (B) Methionine (C) Proline (D) Hydroxyproline
33.	reducing agent in		44.	of amino acids is
	(A) Bradykinin (C) Tyrocidin	(B) Kallidin (D) Glutathione		(A) 510 (B) 590 (C) 610 (D) 650
34.	An example of m	netalloprotein is	45.	Plasma proteins which contain more than
	(A) Casein (C) Gelatin	(B) Ceruloplasmin(D) Salmine		4% hexosamine are (A) Microglobulins (B) Glycoproteins
35.	Carbonic anhydr	ase is an example of		(C) Mucoproteins (D) Orosomucoids
	(A) Lipoprotein (C) Metalloprotein	(B) Phosphoprotein (D) Chromoprotein	46.	After releasing O ₂ at the tissues hemoglobin transports
36.	An example of cl	nromoprotein is		(A) CO ₂ and protons to the lungs
	(A) Hemoglobin (C) Nuclein	(B) Sturine (D) Gliadin		 (B) O₂ to the lungs (C) CO₂ and protons to the tissue (D) Nutrients
37.	An example of so	leroprotein is	47.	
	(A) Zein (C) Glutenin	(B) Keratin (D) Ovoglobulin		hypermobile joints and skin abnormalities is due to
38.	Casein, the milk	protein is		(A) Abnormality in gene for procollagen
	(A) Nucleoprotein (C) Phosphoprotein	(B) Chromoprotein		(B) Deficiency of lysyl oxidase(C) Deficiency of prolyl hydroxylase(D) Deficiency of lysyl hydroxylase
39.	An example of	phosphoprotein present	48.	
	in egg yolk is		40.	(A) Anhydrous acetone(B) Aqueous alcohol
	(A) Ovoalbumin (C) Ovovitellin	(B) Ovoglobulin (D) Avidin		(C) Anhydrous alcohol (D) Benzene
40.	A simple protein teins of the spern	found in the nucleopro-	49.	A cereal protein soluble in 70% alcoho but insoluble in water or salt solution is
	(A) Prolamine (C) Glutelin	(B) Protamine (D) Globulin		(A) Glutelin (B) Protamine (C) Albumin (D) Gliadin
41.	Histones are	(=)	50.	Many globular proteins are stable in
	(A) Identical to pro-	tamine		solution inspite they lack in
	(B) Proteins rich in	lysine and arginine gh molecular weight		(A) Disulphide bonds (B) Hydrogen bonds (C) Salt bonds (D) Non polar bonds
		ter and very dilute acids	51.	The hydrogen bonds between peptide linkages of a protein molecules are inter
42.	The protein prese			fered by
	(A) Keratin (C) Myosin	(B) Elastin (D) Tropocollagen		(A) Guanidine (B) Uric acid (C) Oxalic acid (D) Salicylic acid

52. Globular proteins have completely folded, coiled polypeptide chain and the axial ratio (ratio of length to breadth) is

- (A) Less than 10 and generally not greater than
- (B) Generally 10
- (C) Greater than 10 and generally 20
- (D) Greater than 10

53. Fibrous proteins have axial ratio

- (A) Less than 10
- (B) Less than 10 and generally not greater than 3-4
- (C) Generally 10
- (D) Greater than 10

54. Each turn of α -helix contains the amino acid residues (number):

- (A) 3.6
- (C) 4.2
- (D) 4.5

55. Distance traveled per turn of α -helix in nm is

- (A) 0.53
- (B) 0.54
- (C) 0.44
- (D) 0.48

56. Along the α -helix each amino acid residue advances in nm by

- (A) 0.15
- (B) 0.10
- (C) 0.12
- (D) 0.20

57. The number of helices present in a collagen molecule is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

58. In proteins the α -helix and β -pleated sheet are examples of

- (A) Primary structure (B) Secondary structure

- (C) Tertiary structure (D) Quaternary structure

59. The a-helix of proteins is

- (A) A pleated structure
- (B) Made periodic by disulphide bridges
- (C) A non-periodic structure
- (D) Stabilised by hydrogen bonds between NH and CO groups of the main chain

60. At the lowest energy level α -helix of polypeptide chain is stabilised

- (A) By hydrogen bonds formed between the H of peptide N and the carbonyl O of the residue
- Disulphide bonds
- (C) Non polar bonds
- (D) Ester bonds

61. Both α -helix and β -pleated sheet conformation of proteins were proposed by

- (A) Watson and Crick
- Pauling and Corey
- Waugh and King
- (D) Y.S.Rao

62. The primary structure of fibroin, the principal protein of silk worm fibres consists almost entirely of

- (A) Glycine
- (B) Aspartate
- (C) Keratin
- (D) Tryptophan

63. Tertiary structure of a protein describes

- (A) The order of amino acids
- (B) Location of disulphide bonds
- (C) Loop regions of proteins
- (D) The ways of protein folding

64. In a protein molecule the disulphide bond is not broken by

- (A) Reduction
- Oxidation
- Denaturation
- X-ray diffraction

65. The technique for purification of proteins that can be made specific for a given protein is

- (A) Gel filtration chromotography
- Ion exchange chromatography
- Electrophoresis
- Affinity chromatography

66. Denaturation of proteins results in

- (A) Disruption of primary structure
- (B) Breakdown of peptide bonds
- Destruction of hydrogen bonds
- (D) Irreversible changes in the molecule

67.	Ceruloplasmin is		77.	A lipoprotein inversely related to the
	(A) α_1 -globulin	(B) α_2 -globulin		incidence of coronary artherosclerosis is
	(C) β-globulin	(D) None of these		(A) VLDL (B) IDL
68.		th the fastest electro-		(C) LDL (D) HDL
	phoretic mobility a eride content is	nd the lowest triglyc-	78.	The primary biochemical lesion in homozygote with familial hypercholester-
	(A) Chylomicron	(B) VLDL		olemia (type IIa) is
	(C) IDL	(D) HDL		(A) Loss of feed back inhibition of HMG
69.		ociated with activation		reductase
	of LCAT is			(B) Loss of apolipoprotein B
	(A) HDL	(B) LDL		(C) Increased production of LDL from VLDL
	(C) VLDL	(D) IDL		(D) Functional deficiency of plasma membrane receptors for LDL
70.		which acts as activator		·
	of LCAT is		79.	In abetalipoproteinemia, the biochemical defect is in
	• •	(B) A-IV		
	(C) C-II	(D) D		(A) Apo-B synthesis
7 1.		which acts as actiator		(B) Lipprotein lipase activity
	of extrahepatic lipo			(C) Cholesterol ester hydrolase
		(B) Apo-B		(D) LCAT activity
		(D) Apo-D	80.	Familial hypertriaacylglycerolemia is
72.		in which forms the		associated with
	integral component	=		(A) Over production of VLDL
	(A) B-100	(B) B-48		(B) Increased LDL concentration
	(C) C	(D) D		(C) Increased HDL concentration
73.		ein which from the		(D) Slow clearance of chylomicrons
	integral component		81.	For synthesis of prostaglandins, the
	(A) B-100	(B) B-48		essential fatty acids give rise to a fatty
	(C) A	(D) D		acid containing
74.	The apolipoprotein for LDL receptor is	which acts as ligand		(A) 12 carbon atoms (B) 16 carbon atoms (C) 20 carbon atoms (D) 24 carbon atoms
	(A) B-48	(B) B-100	82.	All active prostaglandins have at least one
	(C) A	(D) C		double bond between positions
75.	Serum LDL has been	found to be increased		(A) 7 and 8 (B) 10 and 11
	in			(C) 13 and 14 (D) 16 and 17
	(A) Obstructive jaundi	ice	83.	Normal range of plasma total phospho-
	(B) Hepatic jaundice		00.	lipids is
	(C) Hemolytic jaundice			(A) 0.2–0.6 mmol/L (B) 0.9–2.0 mmol/L
	(D) Malabsorption syr			(C) 1.8–5.8 mmol/L (D) 2.8–5.3 mmol/L
76.		sociated with high	0.4	
		ıry atherosclerosis is	84.	HDL ₂ have the density in the range of
	(A) LDL	(B) VLDL		(A) 1.006–1.019 (B) 1.019–1.032
	(C) IDL	(D) HDL		(C) 1.032–1.063 (D) 1.063–1.125

85.		poproteins hav ge of	e t	he density in the	96		osin acts on de oduce	enai	tured proteins to
86.	(C)	0.95–1.006 1.019–1.063 have the densit	(D) y in	•		(B) (C)	Proteoses and per Polypeptides Peptides Dipeptides	otone	98
		0.95–1.006 1.019–1.032		1.006–1.019 1.032–1.163	97.		nin converts cas	sein	to paracasein in
87.	Asp	oirin inhibits the	activ	vity of the enzyme:		(A)	Ca++	(B)	Mg ⁺⁺
	(A)	Lipoxygenase	(B)	Cyclooxygenase		(C)	Na ⁺	(D)	K+
	(C)	Phospholipae A_1	(D)	Phospholipase A ₂	98.	An	expopeptidase	is	
88.	A 's	uicide enzyme'	is			(A)	Trypsin		Chymotrypsin
	(A)	Cycloxygenase	(B)	Lipooxygenase		(C)	Elastase	(D)	Elastase
	(C)	Phospholipase A ₁	(D)	Phospholipase A_2	99.			ı is s	pecific for peptide
89.		adipose tiss rease	υe	prostaglandins		(A)	nds of Basic amino acids		
		Lipogenesis Gluconeogenesis		Lipolysis Glycogenolysis		(C)	Acidic amino acid Aromatic amino a Next to small ami	cids	cid residues
90	The	optimal pH for	the	enzyme pepsin is	100.	Chy	motrypsin is spe	ecific	for peptide bonds
	(A)	1.0-2.0	(B)	4.0-5.0			ntaining		
	(C)	5.2-∏6.0	(D)	5.8-6.2			Uncharged amino		d residues
91.	Pep by	sinogen is conv	erte	ed to active pepsin		(C)	Acidic amino acid		ı
	(A)	HCl	(B)	Bile salts		, ,	Small amino acid		
	(C)	Ca ⁺⁺	(D)	Enterokinase	101.		e end product o .T. is	t pr	otein digestion in
92.	The	optimal pH for	the	enzyme rennin is				(B)	Tripeptide
	(A)	2.0	(B)	4.0			Polypeptide		Amino acid
	(C)	8.0	(D)	6.0	102.	Na	tural L-isomers	of	amino acids are
93.	The	optimal pH for	the	enzyme trypsin is			sorbed from inte		-
	(A)	1.0-2.0	(B)	2.0-4.0			Passive diffusion		
	(C)	5.2-6.2	(D)	5.8-6.2			Faciliated diffusion		
94.	The	optimal pH fo	r th	e enzyme chymo-	103.		normalities of b		
	try	osin is					Haemophilia Gout	. ,	Christmas disease
	٠,	2.0		4.0					Both (A) and (B)
	(C)	6.0	(D)	8.0	104.				for the synthesis n carbohydrate
95	Try by	psinogen is conv	erte	ed to active trypsin		inte		rans	samination which
	(A)	Enterokinase	(B)	Bile salts		(A)	Thiamin	(B)	Riboflavin
	(C)	HCI	(D)	Mg ⁺⁺		(C)	Niacin	(D)	Pyridoxal phosphate

105.	The main sites for oxidative deamination	113.	Control of urea cycle involves the enzyme:
	(A) Liver and kidney (B) Skin and pancreas (C) Intestine and mammary gland		(A) Carbamoyl phosphate synthetase(B) Ornithine transcarbamoylase(C) Argininosuccinase(D) Arginase
106.	(D) Lung and spleenA positive nitrogen balance occurs(A) In growing infant	114.	Transfer of the carbamoyl moiety of carbamoyl phosphate to ornithine is catalysed by a liver mitochondrial enzyme:
	(B) Following surgery(C) In advanced cancer(D) In kwashiorkar		 (A) Carbamoyl phosphate synthetase (B) Ornithine transcarbamoylase (C) N-acetyl glutamate synthetase (D) N-acetyl glutamate hydrolase
107.	The main site of urea synthesis in mammals is (A) Liver (B) Skin	115.	A compound serving a link between citric acid cycle and urea cycle is (A) Malate (B) Citrate
108.	(C) Intestine (D) Kidney The enzymes of urea synthesis are found in	116.	(C) Succinate (D) Fumarate The 2 nitrogen atoms in urea are contributed by
	(A) Mitochondria only(B) Cytosol only(C) Both mitochondria and cytosol(D) Nucleus		(A) Ammonia and glutamate(B) Glutamine and glutamate(C) Ammonia and aspartate(D) Ammonia and alanine
109.	The number of ATP required for urea synthesis is	11 <i>7</i> .	In carcinoid syndrome the argentaffin tissue of the abdominal cavity over-produce
110	(A) 0 (B) 1 (C) 2 (D) 3		(A) Serotonin (B) Histamine (C) Tryptamine (D) Tyrosine
110.	Most of the ammonia released from L- α -amino acids reflects the coupled action of transaminase and	118.	Tryptophan could be considered as precursor of
	(A) L-glutamate dehydrogenase(B) L-amino acid oxidase	110	(A) Melanotonin (B) Thyroid hormones (C) Melanin (D) Epinephrine
	(C) Histidase(D) Serine dehydratase	117.	Conversion of tyrosine to dihydroxyphe- nylalanine is catalysed by tyrosine hy- droxylase which requires
111.	In urea synthesis, the amino acid functioning solely as an enzyme activator:		(A) NAD (B) FAD (C) ATP (D) Tetrahydrobiopterin
	(A) N-acetyl glutamate (B) Ornithine (C) Citrulline (D) Arginine	120.	of catecholamines is
112.	The enzyme carbamoyl phosphate synthetase requires (A) Mg ⁺⁺ (B) Ca ⁺⁺ (C) Na ⁺ (D) K ⁺		 (A) Decarboxylation of dihydroxyphenylalanine (B) Hydroxylation of phenylalanine (C) Hydroxylation of tyrosine (D) Oxidation of dopamine

121.				e β-oxidase which of dopamine to	130	Che	Chemical score of protein zein is (A) 0 (B) 57		
		epinephrine re		-		, ,	0 60	. ,	70
	٠,	Vitamin A Vitamin E	٠,	Vitamin C Vitamin B ₁₂	131.				white protein is
122.		numans the sulp	hur	of methionine and		(A) (C)	94 85	. ,	83 77
	(A)	Ethereal sulphate Inorganic sulpha Sulphites Thioorganic com	e	·		(A) (C)	75% 91%	(B) (D)	of egg protein is 80% 72% of milk protein is
123.		all amount of tributed by the		nary oxalates is ino acid:			75% 86%		80% 91%
		Glycine Alanine		Tyrosine Serine	134.	ΑI			d is an essential
124.	acid (A)	amino acid who d to form hippu Glycine Serine	ric a (B)	etoxicated benzoic cid is Alanine Glutamic acid		(B)	That is most defici That is most exces That which incred That which incred	s in p ises t	oroteins he growth
125.			volv	ed in the synthesis	135.	The	limiting amino	acio	d of rice is
	(A)	of creatin are (A) Arginine, glycine, active methionine (B) Arginine, alanine, glycine				(A) (C)	Phenylalanine	(D)	Tryptophan Tyrosine
	(C)	Glycine, lysine, methionine Arginine, lysine, methionine			136.	(A)	Tryptophan	(B)	d of fish proteins is Cysteine
126.		emical score of a	egg	proteins is consid-	137.	(C) Pul	Lysine ses are deficien		Threonine
	(A) (C)	100 50		60 40		(A) (C)	Lysine Methionine	. ,	Threonine Tryptophan
127.	Che	emical score of	milk	proteins is	138.	A tı	race element de	ficie	ent in the milk is
		70 60	(B) (D)	65 40			Magnesium Zinc		Copper Chloride
128.	Che is	emical score of p	rote	ins of bengal gram	139.		onjugated proto k is	ein	present in the egg
	(A) (C)	70 44	٠,	60 42		(A) (C)	Vitellin Albuminoids	٠,	Livetin Ovo-mucoid
129.	Che	emical score of	prot	ein gelatin is	140.	The	chief protein o	f cov	w's milk is
	(A)		(B)	44 60			Albumin Livetin	(B)	Vitellin Casein

141.	Aw	ater soluble vita	ımir	n deficient in egg is	153.			ns, i	the percentage of
	, ,	Thiamin		Ribofalvin			umin is about 20–40	(R)	30–45
			(D)	Cobalamin		, ,	50–70		80–90
142.		es are rich in			154.	In t	he total prote	ins	percentage of a_1
		Lysine Tryptophan		Methionine			bulin is about		portornage or u_1
1.40		,	(0)	rnenylalanine			0.2–1.2%		
143.		is deficient in	(D)	\/:-		(C)	2.4–4.4%	(D)	5.0–10.0%
		•		Vitamin B ₂ Potassium	155.		he total protei Iobulin is about		he percentage of
144.	Milk	is deficient in				(A)	2.4-4.4%	(B)	10.0-21.0%
	, ,	Calcium	. ,	Iron		(C)	6.1–10.1%	(D)	1.2–2.0%
	(C)	Sodium	(D)	Potassium	156.				normal albumin
145.				ation (NPU) is low,		_	bulin ratioratio	-	•
		requirements fo	-				1.0:0.8		
		High Low		Moderate Supplementary			2.0 : 1.0		
147	, ,				157.	In invo	Thymol turbid olved is mainly	lity	test the protein
140.				nan milk is about			Albumin		α_1 -Globulin
	, ,	1.4% 3.4%		2.4% 4.4%		, ,	α_2 -Globulin		'
147	` '		` '	's milk is about			_		•
147.		2.5%		3.5%	158.		quaternary str ced by	UCTU	ure, subunits are
	, ,	4.5%		5.5%			-	(B)	Disulphide bonds
1/12	, ,	ein content of s					•		Non-covalent bonds
170.			_	40%	159.	Mol	lecular weight	of h	uman albumin is
	, ,			60%		abo			
140		d content of egg				, ,	·		90,000
147.	-	12%		33%		٠,	•		54,000
		10–11%		Traces	160.				nino acid exists as
150.	The	recommended (y allowance (RDA)		٠,	Anion Zwitterion		Cation
		roteins for an a			1/1				
		70 gms 40 gms		50 gms	161.	bet	ween		can be formed
161							Two methionine re		es
151.		basic amino aci		are Bile acids		(C) (R)	Two cysteine resid		etaina rasidua
		Lysine Glycine	٠,	Alanine			All of these	a a c _y	Sieme residue
150		,	` '		162	Δ	pagulated prote	ein is	5
132.		nal adult femal		uirement for the about	.04		Insoluble	4	-
		1500		2100		(B)	Biologically non-f	unctio	onal
	(C)	2500	(D)	2900		(C) (D)	Unfolded All of the above		

140	A4 11 h-ala 4h-			(C)	Classic		
103.	amino acid exists	e isoelectric point, an as			Chaperonins All of these		
	(A) Cation		172.	Pri	mary structure o	f a p	rotein is formed by
	(B) Anion				Hydrogen bonds	-	_
	(C) Zwitterion	.1 1.		(C)	Disulphide bonds		•
	(D) Undissociated me		1 <i>7</i> 3.	α-H	lelix is formed b	v	
164.	An amino acid have chain is	ving a hydrophilic side		(A)	Hydrogen bonds	-	
	(A) Alanine	(B) Proline			Hydrophobic bor		
	(C) Methionine	(D) Serine		(C)			
165.	An amino acid tha	t does not take part in		(D)	Disulphide bonds		
	$\boldsymbol{\alpha}$ helix formation		174.		itelins are prese	ent i	n
	(A) Histidine	(B) Tyrosine			Milk		Eggs
	(C) Proline	(D) Tryptophan		(C)	Meat	(D)	Cereals
166.	A protein rich in cy	steine is	1 <i>7</i> 5.	Arc	omatic amino ac	ids o	an be detected by
	(A) Collagen	(B) Keratin		(A)	Sakaguchi reactio	on	
	(C) Haemoglobin	(D) Gelatin		٠,	Millon-Nasse rea		
167.	Primary structure	e of proteins can be			Hopkins-Cole rea		
	determined by the use of			(D)	Xanthoproteic rec	ıction	
	(A) Electrophoresis	(B) Chromatography	176.	Tw	o amino groups	are	present in
	(C) Ninhydrin	(D) Sanger's reagent		(A)	Leucine		Glutamate
168.	Electrostatic bonds	can be formed between		(C)	Lysine	(D)	Threonine
	the side chains of		1 <i>77</i> .	5 1 7			
	(A) Alanine and leuc	cine		foll	lowing are disru	pte	d except
	(B) Leucine and valid			(A)	•		Secondary structure
	(C) Asparate and gl			(C)	Tertiary structure	(D)	Quaternary structure
1/0	(D) Lysine and aspar		1 <i>7</i> 8.		the following ino acids excep		branched chair
169.	Sanger's reagent				Isoleucine		Alanine
	(A) Phenylisothiocya(B) Dansyl chloride	nate		, ,	Leucine		Valine
	(B) Dansyl chloride (C) 1-Fluoro-2, 4-dini	trobenzene	170	` '			in the side chain o
	(D) Ninhydrin	moderizerie	177.		Serine		
1 <i>7</i> 0.	•	t protein in mammals is		(A) (C)	Lysine		Arginine Proline
170.		•	100	` '	•		
	(A) Albumin (C) Collagen	(B) Haemoglobin (D) Elastin	180.		man's reagent c		iins
		, ,		(A)	Phenylisothiocyar		
171.	Folding of newly s accelerated by	synthesized proteins is		(B) (C)	1-Fluoro-2, 4-dini Dansyl Chloride	irope	пиепе
	(A) Protein disulphid	e isomerase		(C) (D)	tBOC azide		
	1, 1 1 Tolom distribution	0 10011101 000		1-1			

(B) Prolyl cis-trans isomerase

181. Edman's reaction can be used to

- (A) Determine the number of tyrosine residues in a protein
- (B) Determine the number of aromatic amino acid residues in a protein
- (C) Determine the amino acid sequence of a
- (D) Hydrolyse the peptide bonds in a protein

182. Inherited deficiency of β-glucosidase causes

- (A) Tay-Sachs disease
- (B) Metachromatic leukodystrophy
- (C) Gaucher's disease
- (D) Multiple sclerosis

183. Tay-Sachs disease results from inherited deficiency of

- (A) Arylsulphatase A
- (B) Hexosaminidase A
- (C) Sphingomyelinase
- (D) Ceramidase

184. The largest alpolipoprotein is

- (A) Apo E
- (B) Apo B-48
- (C) Apo B-100
- (D) Apo A-I

185. Apolipoprotein B-100 is synthesised in

- (A) Adipose tissue
- (B) Liver
- (C) Intestine
- (D) Liver and intestine

186. Apolipoprotein B-48 is synthesized in

- (A) Adipose tissue
- (B) Liver
- (C) Intestine
- (D) Liver and intestine

187. Apolipoproteins A-I and A-II are present

- (A) LDL only
- (B) LDL and VLDL
- (C) HDL only
- (D) HDL and chylomicrons

188. Apolipoprotein B-48 is present in

- (A) Chylomicrons
- (B) VLDL
- (C) LDL
- (D) HDL

189. Apolipoprotein B-100 is present in

- (A) Chylomicrons
- (B) VLDL only
- (C) LDL only
- (D) VLDL and LDL

190. Apolipoproteins C-I, C-II and C-III are present in

- (A) Chylomicrons
- (B) VLDL
- HDL
- (D) All of these

191. Apolipoprotiens C-I, C-II and C-III are present in all of the following except

- (A) Chylomicrons
- (B) VLDL
- (C) LDL
- (D) HDL

192. Apolipoprotein A-I acts as

- (A) Enzyme activator (B) Ligand for receptor
- (C) Both (A) and (B) (D) None of these

193. Apolipoprotien B-100 acts as

- (A) Enzyme activator (B) Ligand for receptor
- (C) Both (A) and (B) (D) None of these

194. Apolipoprotein C-II is an activator of

- (A) Lecithin cholesterola acyl transferase
- (B) Phospholipase C
- (C) Extrahepatic lipoprotein lipase
- (D) Hepatic lipoprotein lipase

195. Nascent chylomicron receives apolipoproteins C and E from

- (A) VLDL remnant (B) VLDL
- (C) LDL
- (D) HDL

196. Terminal transferase

- (A) Removes nucleotides from 3' end
- (B) Adds nucleotides at 3' end
- Removes nucleotides from 3'end
- (D) Adds nucleotides at 3'end

197. \$1 nuclease hydrolyses

- (A) DNA of somatic cells
- (B) DNA of sperms
- (C) Any double stranded DNA
- Any single stranded DNA

198. Positive nitrogen balance is seen in

- (A) Starvation
- (B) Wasting diseases
- (C) Growing age
- (D) Intestinal malabsorption

199. Alanine can be synthesized from 207. All the following statement about hydroxyproline are true except (A) Glutamate and α-ketoglutarate (A) There is no codon for hydroxyproline (B) Pyruvate and glutamate (B) It is present in large amounts in collagen (C) Pyruvate and α-ketoglutarate (C) Free proline cannot be hydroxylated to (D) Asparate and α-ketoglutarate hydroxyproline 200. All of the following are required for (D) Hydroxylation of proline residues is catalysed synthesis of alanine except by a dioxygenase (B) α-ketoglutarate (A) Pyruvate 208. All of the following are required for (C) Glutamate (D) Pyridoxal phosphate hydroxylation of proline residues except 201. All of the following statements about (A) Ascorbic acid (B) Glutamate aspartate are true except (D) Molecular oxygen (C) Ferrous ions (A) It is non-essential amino acid 209. Cysteine can be synthesized from (B) It is a dicarboxylic amino acid methionine and (C) It can be synthesized from pyruvate and (A) Serine (B) Homoserine glutamate (C) Homocysteine (D) Threonine (D) It can be converted into asparagine 210. Methionine is synthesized in human body 202. Glycine can be synthesized from from (A) Serine (B) Choline (A) Cysteine and homoserine (C) Betaine (D) All of these Homocysteine and serine 203. All of the following are required for (C) Cysteine and serine synthesis of glutamine except (D) None of these (A) Glutamate 211. Hydroxylation of phenylalanine requires (B) Ammonia all of the following except (C) Pyridoxal phosphate (A) Phenylalanine hydroxylase (D) ATP Tetrahydrobiopterin 204. A coenzyme required for the synthesis of (C) NADH glycine from serine is (D) Molecular oxygen (A) ATP 212. Non-Protein amino acids are Pyridoxal phosphate (A) Ornithine **Tetrahydrofolate** (B) β-alanine (C) γ-amino butyric acid 205. All of the following statements about (D) All of these proline are true except 213. The amino acid that undergoes oxidative (A) It is an imino acid deamination at significant rate is (B) It can be synthesized from glutamate (C) It can be catabolised to glutamate Alanine (B) Aspartate (D) Free proline can be hydroxylated to (C) Glutamate (D) Glutamine hydroxyproline 214. Allosteric inhibitor of glutamate dehydro-206. A protein rich in hydroxyproline is genase is

(A) ATP

(C) AMP

(A) Prolamin

(C) Collagen

(B) Procollagen

(D) Proinsulin

(B) ADP

(D) GMP

215. Allsoteric activator of glutamate dehydrogenase is

- (A) ATP
- (B) GTP
- (C) ADP and GDP
- (D) AMP and GMP

216. Free ammonia is released during

- (A) Oxidative deamination of glutamate
- (B) Catabolism of purines
- (C) Catabolism of pyrimidines
- (D) All of these

217. An organ which is extremely sensitive to ammonia toxicity is

- (A) Liver
- (B) Brain
- (C) Kidney
- (D) Heart

218. Ammonia is transported from muscles to liver mainly in the form of

- (A) Free ammonia
- (B) Glutamine
- (C) Asparagine
- (C) Alanine

219. The major site of urea synthesis is

- (A) Brain
- (B) Kidneys
- (C) Liver
- (D) Muscles

220. Carbamoyl phosphate required for urea synthesis is formed in

- (A) Cytosol
- (B) Mitochondria
- (C) Both (A) and (B) (D) None of these

221. Cytosolic and mitochondrial carbamoyl phosphate synthetase have the following similarity:

- (A) Both use ammonia as a substance
- Both provide carbamoyl phosphate for urea synthesis
- (C) Both require N-acetylglutamate as an activator
- Both are allosteric enzymes

222. The following enzyme of urea cycle is present in cytosol:

- (A) Argininosuccinic acid synthetase
- (B) Argininosuccinase
- (C) Arginase
- (D) All of these

223. ATP is required in following reactions of urea cycle:

- (A) Synthesis of carbamoyl phosphate and
- (B) Synthesis of citrulline and argininosuccinate
- (C) Synthesis of argininosuccinate and arginine
- (D) Synthesis of carbamoyl phosphate and argininosuccinate

224. Daily excretion of nitrogen by an adult man is about

- (A) 15-20 mg
- (B) 1.5-2 gm
- (C) 5-10 gm
- (D) 15-20 gm

225. Maple syrup urine diseases is an inborn error of metabolism of

- (A) Sulphur-containing amino acids
- Aromatic amino acids
- Branched chain amino acids
- Dicarboxylic amino acids

226. Cystinuria results from inability to

- (A) Metabolise cysteine
- (B) Convert cystine into cysteine
- (C) Incorporate cysteine into proteins
- (D) Reabsorb cystine in renal tubules

227. The defective enzyme in histidinemia is

- (A) Histidine carboxylase
- (B) Histidine decarboxylase
- Histidase (C)
- (D) Histidine oxidase

228. All the following statements about phenylketonuria are correct except

- (A) Phenylalanine cannot be converted into tyrosine
- Urinary excretion of phenylpyruvate and phenyllactate is increased
- It can be controlled by giving a lowphenylalanine diet
- It leads to decreased synthesis of thyroid hormones, catecholamines and melanin

229. All the following statements about albinism are correct except

- Tyrosine hydroxylase (tyrosinase) is absent or deficient in melanocytes
- Skin is hypopigmented
- (C) It results in mental retardation
- (D) Eyes are hypopigmented

230. Glycine is not required for the formation

- (A) Taurocholic acid
- (B) Creatine
- **Purines**
- (D) Pyrimidines

231. Histamine is formed from histidine by

- Deamination
- (B) Dehydrogenation
- Decarboxylation (D) Carboxylation

232. DOPA is an intermediate in the synthesis of

- (A) Thyroid hormones
- (B) Catecholamines
- (C) Melanin
- Catecholamines and melanin

233. All the following statements about pepsin are correct except

- (A) It is smaller than pepsinogen
- (B) It is formed by the action of HCl on its precursor
- (C) Its optimum pH is 1.0-2.0
- (D) It hydrolyses the C-terminal and N-terminal peptide bonds of proteins

234. Pancreatic juice contains the precursors of all of the following except

- (A) Trypsin
- (B) Chymotrypsin
- (C) Carboxypeptidase (D) Aminopeptidase

235. The only correct statement about chymotrypsin is

- (A) It is formed from trypsin
- Carboxypeptidase converts trypsin into chymotrypsin
- (C) Its optimum pH is around 7
- (D) It hydrolyses peptide bonds involving basic amino acids

236. The portion of the antigen molecule which is recognized by antibody is known as

- (A) Hapten
- (B) Epitope
- (C) Complement
- (D) Variable region

237. All the following statements about haptens are true except

- (A) They have high molecular weights
- (B) They cannot elicit an immune response by

themselves

- When combined with some other large molecule, they can elicit an immune response
- Once an immune response develops, the free hapten can be recognized by the antibody

238. Antigens and haptens have the following similarity:

- (A) They have high molecular weights
- (B) They can elicit immune response by themselves
- (C) They can elicit an immune response only in association with some other large molecule
- Once an immune response develops, free antigen and free hapten can be recognized by the antibody

239. The minimum number of polypeptide chains in an immunoglobulin is

- Two
- (B) Four
- (C) Five
- (D) Six

240. Light chains of immunoglobulins are of following types:

- (A) Alpha and kappa (B) Alpha and gamma
- (C) Lambda and delta(D) Kappa and lambda

241 Immunoglobulins are classified on the basis of

- (A) Type of light chains
- (B) Type of heavy chains
- (C) Types of light and heavy chains
- (D) Molecular weight

242. The molecular weight of light chains is

- (A) 10,000-15,000 (B) 20,000-25,000
- (C) 25,000-50,000 (D) 50,000-75,000

243. The molecular weight of heavy chains is

- (A) 20,000-25,000 (B) 25,000-50,000
- (C) 50,000-70,000 (D) 70,000-1,00,000

244. Secretory component is present in

- (A) IgA
- (B) IgG
- (C) IgM
- (D) All of these

245. The variable region of light chains is the

- N-terminal quarter (B) N-terminal half
- (C) C-terminal quarter (D) C-terminal half

246. The variable region of light chain is the 256. The immunoglobulin having the longest half-life is N-terminal quarter (B) N-terminal half (A) IgA (B) IgG (C) C-terminal auarter (C) IgM (D) IgE (D) C-terminal half 257. The half-life of IgG is 247. The variable region of light chains has (A) 2-3 days (B) 5-6 days (A) One hypervariable region (C) 8-10 days (D) 20-25 days (B) Two hypervariable regions 258. Recognition of antigen is the function of (C) Three hypervariable regions (A) Variable region of light chains (D) Four hypervariable regions Variable regions of light and heavy chains 248. The variable region of heavy chains has (C) Constant region of heavy chains (A) One hypervariable region (D) Constant regions of light and heavy chains (B) Two hypervariable regions (C) Three hypervariable regions 259. The effector function of antibody is (D) Four hypervariable regions performed by (A) Variable region of light chains 249. The most abundant immunoglobulin in (B) Constant region of heavy chains plasma is (C) Variable regions of light and heavy chains (A) IgA (B) IgG Constant regions of light and heavy chains (C) IgM (D) IgD 250. The largest immunoglobulin is 260. Complement system can be activated by binding of antigen to (A) IgA (B) IaG (D) IgD (C) IgM (A) IgA (B) IgD (C) IgE (D) IaM 251. The plasma concentration of IgA is (B) $40-200 \, \text{mg/dl}$ 261. C1 component of classical complement (A) 1–5 mg/dl pathway is made up of (C) $60-500 \, \text{mg/dl}$ (D) 700-1,500 mg/dl (A) Complements 1g and 1r 252. An immunoglobulin found in exocrine (B) Complements 1g and 1s secretions is Complements 1r and 1s (A) lgΑ (B) IgG Complements 1q, 1r and 1s (D) IgE lgΜ 253. Allergic reactions are mediated by 262. The components of complement system are activated by (A) IgA (B) laG (D) IgE Microsomal hydroxylation (C) IgD Phosphorylation 254. An immunoglobulin which can cross the (C) Glycosylation placental barrier is (D) Proteloysis (A) lgΑ (B) IgM (D) None of these (C) IgD 263. The component system forms a membrane attack complex made up of 255. IgM possesses (A) Complements 1q, 1r and 1s (A) Two light chains and two heavy chains (B) Four light chains and four heavy chains Complements 1, 2, 3 and 4 (C) Six light chains and six heavy chains Complements 5b, 6, 7 and 8 (D) Ten light chains and ten heavy chains (D) Factors B and D

264. Factors B and D are required in 272. Gamma heavy chains are present in (A) The classical pathway of complement fixation (A) IgA (B) IaG (B) The alternate complement pathway (C) IgM (D) IgD Both (A) and (B) 273. Heavy chains in IgD are of following type: None of these (A) Alpha (B) Gamma 265. The alternate complement pathway (C) Delta (D) Epsilon doesn't involve 274. On exposure to any antigen, the first (A) Antigen-antibody complex antibody to be formed is of the following (B) Complement 3 class: (C) Factors B and D (A) IgA (B) IgG (D) Membrane attack unit (C) IgM (D) IgE 266. Antibody diversity arises from 275. Constant segment genes of heavy chains (A) Gene amplification are present in a cluster in which the first (B) Gene re-arrangement gene on side is (C) Alternative splicing (A) Alpha (B) Gamma (D) All of these (D) None of these (C) Delta 267. A light chain gene is constructed from the 276. Cell-mediated immunity is the function of following segments: (A) B lymphocytes (B) Tlymphocytes (A) Variable and constant segments (C) Plasma cells (D) Basophils (B) Variable, joining and constant segments (C) Variable, diversity and constant segments 277. The most abundant T cells are (D) Variable, joining, diversity and constant (A) Cytotoxic T cells (B) Helper T cells segments (C) Suppressor T cells (D) Memory T cells 268. In metabolic point of view, amino acids 278. T cells can recognise are classified as (A) Free antigens (A) Glycogenic (B) Antigens bound to cells (B) Ketogenic (C) Antigens bound to antibodies (C) Glycogenic or Ketogenic (D) Antigens bound to MHC proteins (D) All of these 279. MHC proteins are unique to 269. Diversity segments are present in (A) Light chain genes (A) Each cell (B) Each organ (C) Each individual (D) Each species (B) Heavy chain genes (C) Light and heavy chain genes 280. MHC class I proteins are present on the (D) None of these surface of 270. Constant segments of heavy chains are (A) B cells only (B) T cells only of (C) Macrophages only(D) All cells (A) Five types (B) Six types 281. MHC class I proteins, in conjunction with (D) Eight types (C) Seven types antigens are recognised by 271. Gamma heavy chains are of (A) Cytotoxic T cells (B) Helper T cells (A) Two types (B) Three types (C) Suppressor T cells (D) Memory T cells

(C) Four types

(D) Five types

282. MHC class II proteins are present on the surface of

- (A) All cells
- B lymphocytes only
- (C) Macrophages only
- (D) Macrophages and B lymphocytes

283. MHC Class II proteins, in conjunction with antigens, are recognised by

- (A) Cytotoxic T cells
- (B) Helper T cells
- (C) Suppressor T cells
- (D) Memory T cells

284. CD 8 is a transmembrane glycoprotein present in

- (A) Cytotoxic T cells
- (B) Helper T cells
- (C) Suppressor T cells
- (D) Memory T cells

285. CD 4 is a transmembrane glycoprotein present in

- (A) Cytotoxic T cells (B) Helper T cells
- (C) Suppressor T cells (D) Memory T cells

286. CD 3 complex and p 56^{lck} proteins are present in

- (A) Cytotoxic T cells
- (B) Helper T cells
- (C) Both (A) and (B) (D) None of these

287. Cytotoxic T cells release

- (A) Perforins
- (B) Interleukins
- (C) Colony stimulating factors
- (D) Tumour necrosis factor

288. Helper T cells release

- (A) Interleukins
- (B) Colony stimulating factors
- (C) Tumour necrosis factor
- (D) All of these

289. MHC Class III proteins include

- (A) Immunoglobulins
- (B) Components of complement system
- (C) T cells receptors
- (D) CD4 and CD8 proteins

290. Human immunodeficiency virus destroys

- (A) Cytotoxic T cells
- (B) Helper T cells
- (C) B cells
- (D) Plasma cells

291. In allergic diseases, the concentration of the following is increased in plasma:

- (A) IgA
- (B) IgG
- (C) IgD
- (D) IgE

292. IgE has a tendency to attach to

- (A) Basophils
- (B) Mast cells
- (C) Both (A) and (B) (D) None of these

293. Reaginic antibody is

- (A) IgA
- (B) IgG
- (C) IgD
- (D) IgE

294. Active immunity can be produced by administration of

- (A) Killed bacteria or viruses
- Live attenuated bacteria or viruses
- (C) Toxoids
- (D) All of these

295. Passive immunity can be produced by administration of

- (A) Pure antigens
- Immunoglobulins
- (C)Toxoids
- Killed bacteria or viruses

296. Helper T cells release all the following except

- (A) Interleukins
- (B) Colony stimulating factors
- (C) Perforins
- (D) Tumour necrosis factor

297. IgG cleaved by papain into

- (A) Two light and two heavy chains
- (B) Two F_{ab} and one F_c fragments
- (C) Two pairs of one light and one heavy chain
- (D) One Fab and two Fa fragments

298. Bence-Jones protein is

- (A) An immunoglobulin
- (B) A dimer of heavy chains
- (C) A dimer of light chains
- (D) A dimer of one heavy and one light chains

299. Bence-Jones proteins possess all the following properties except

- (A) They are dimers of light chains
- (B) Their amino acids sequences are identical
- (C) Their N-terminal halves have variable amino acid sequences
- (D) Their C-terminal halves have constant amino acid sequences

300. A Zwitterion is

- (A) Positive ion
- (B) Negative ion
- (C) Both (A) and (C) (D) None of these

301. After accounting for SDA, the net gain of energy from 25 gm of proteins is about

- (A) 70 kcal
- (B) 100 kcal
- (C) 130 kcal
- (D) 200 kcal

302. After accounting for SDA, the net gain of energy from 25 gm of carbohydrates is about

- (A) 70 kcal
- (B) 95 kcal
- (C) 100 kcal
- (D) 105 kcal

303. After accounting for SDA, the net gain of energy from 100 gm of fat is about

- (A) 600 kcal
- (B) 780 kcal
- (C) 900 kcal
- (D) 1020 kcal

304. If proteins, carbohydrates and fats are consumed together:

- (A) The total SDA is the sum of individual SDAs of proteins, carbohydrates and fats
- (B) The total SDA is more than the sum of individual SDAs of proteins, carbohydrates and fats
- (C) Carbohydrates and fats lower the SDA of proteins
- (D) Proteins raise the SDA of carbohydrates and

305. After calculating the energy requirement of a person:

- (A) 10% kcal are subtracted on account of SDA
- (B) 10% kcal are added on account of SDA
- (C) 20% kcal are subtracted on account of SDA
- (D) 20% kcal are subtracted on account of SDA

306. The recommended energy intake for an adult sedentary Indian man is

- (A) 1,900 kcal/day (B) 2,400 kcal/day
- (C) 2,700 kcal/day (D) 3,000 kcal/day

307. The recommended energy intake for an adult sedentary Indian woman is

- (A) 1,900 kcal/day (B) 2,200 kcal/day
- (C) 2,400 kcal/day (D) 2,700 kcal/day

308. During pregnancy, the following should be added to the calculated energy requirement:

- (A) 300 kcal/day
- (B) 500 kcal/day
- (C) 700 kcal/day
- (D) 900 kcal/day

309. During first six months of lactation, the following increment in energy intake is recommended:

- (A) 200 kcal/day
- (B) 300 kcal/day
- (C) 550 kcal/day
- (D) 1,000 kcal/day

310. The proximate principles of diet are

- (A) Vitamins and minerals
- (B) Proteins
- Carbohydrates and fats
- Carbohydrates, fats and proteins

311. The limiting amino acid in wheat is

- Leucine
- (B) Lysine
- (C) Cysteine
- (D) Methionine

312. The limiting amino acid in pulses is

- (A) Leucine
- (B) Lysine
- (C) Tryptophan
- (D) Methionine

313. Maize is poor in

- (A) Lysine
- (B) Methionine
- (C) Tryptophan
- (D) Lysine and tryptophan

314. The percentage of ingested protein/ nitrogen absorbed into blood stream is known as

- (A) Net protein utilisation
- (B) Protein efficiency ratio
- (C) Digestibility coefficient
- (D) Biological value of protein

315. Biological value of a protein is

- (A) The percentage of ingested protein/nitrogen absorbed into circulation
- (B) The percentage of ingested protein/nitrogen in the body
- (C) The percentage of ingested protein utilised for protein synthesis in the body
- (D) The gain in body weight (gm) per gm of protein ingested

316. Net protein utilisation depends upon

- (A) Protein efficiency ratio
- (B) Digestibility coefficient
- (C) Digestibility coefficient and protein efficiency ratio
- (D) Digestibility coefficient and biological value

317. The gain in body weight (gm) per gm of protein ingested is known as

- (A) Net protein utilisation
- (B) Protein efficiency ratio
- (C) Digestibility coefficient
- (D) Biological value of protein

318. The following is considered as reference standard for comparing the nutritional quality of proteins:

- (A) Milk proteins
- (B) Egg proteins
- (C) Meat proteins
- (D) Fish proteins

319. Biological value of egg proteins is about

- (A) 70 %
- (B) 80 %
- (C) 86 %
- (D) 94%

320. The following has the highest protein efficiency ratio:

- (A) Milk proteins
- (B) Egg proteins
- (C) Meat proteins
- (D) Fish proteins

321. The following has the lowest protein efficiency ratio:

- (A) Maize proteins
- (B) Wheat proteins
- (C) Milk proteins
- (D) Rice proteins

322. Protein content of egg is about

- (A) 10%
- (B) 13%
- (C) 16%
- (D) 20%

323. Protein content of meat is about

- (A) 10%
- (B) 13%
- (C) 16%
- (D) 20%

324. Protein content of rice is about

- (A) 7%
- (B) 12%
- (C) 15%
- (D) 20%

325. The calorific value of wheat is about

- (A) 2.5 kcal/gm
- (B) 3.5 kcal/gm
- (C) 4.5 kcal/gm
- (D) 5.5 kcal/gm

326. For vegetarians, pulses are an important source of

- (A) Carbohydrates
- (B) Proteins
- (C) Fat
- (D) Iron

327. The amino acids present in pulses can supplement the limiting amino acids of

- (A) Cereals
- (B) Milk
- (C) Fish
- (D) Nuts and beans

328. Milk is a good source of

- (A) Proteins, calcium and iron
- (B) Proteins, calcium and ascorbic acid
- (C) Proteins, lactose and retinol
- (D) Proteins, lactose and essential fatty acids

329. Milk is a good source of all of the following except

- (A) Essential amino acids
- (B) Vitamin C
- (C) Galactose
- (D) Calcium and phosphorous

330. Milk is poor in

- (A) Cholesterol
- (B) Retinol
- (C) Calcium
- (D) Iron

331. Egg is rich in all of the following except

- (A) Cholesterol
- (B) Saturated fatty acids
- (C) Ascorbic acid (D)
- (D) Calcium

332. A phosphoprotein present in egg is

- (A) Casein
- (B) Albumin
- (C) Ovoglobulin
- (D) Ovovitellin

333.	Consumption of r	aw	eggs can cause		(C)	Muscle wasting kwashiorkor	g occurs in marasm	us but no
	(A) Calcium (C) Biotin		Lipoic acid Vitamin A		(D)	Subcutaneous but not in kwasl	fat disappears in r hiorkor	marasmus
334.	Egg is poor in	. 1		342.		ergy reserves ult man are al	of an average v	well-fed
	(A) Essential amino ac(B) Carbohydrates(C) Avidin	cias				50,000 kcal 200,000 kcal	(B) 100,000 kg (D) 300,000 kg	
	(D) Biotin			343.		ring starvat trient to be de	ion, the first i	reserve
335.	Cholesterol is prese except (A) Milk		n all the following Fish		(A)	Glycogen Triglycerides	(B) Proteins (D) Cholesterol	
	(C) Egg white	٠,	Egg yolk	344.			following enzy	ymes is
	Meat is rich in all of (A) Iron (C) Copper Kwashiorkor occu	(B) (D) Jrs v	Fluorine Zinc		(A) (B) (C)	reased during Digestive enzyr Gluconeogenic Urea cycle enzy Glucokinase	mes enzymes	
	severely deficient in			345.		hypoparathyr	oidism	
	(A) Iron (C) Proteins	٠,	Calories Essential fatty acids				and inorganic pho	sphorous
338.	Clinical features of all of the following				(B)	Plasma calcium are high	and inorganic pho	sphorous
	(A) Mental retardation(C) Oedema		Muscle wasting Anaemia		(C)	Plasma calcii phosphorous hi	um is low and ir gh	norganio
339.	Kwashiorkor usual	-			(D)	Plasma calciu phosphorous lo	ım is high and iı w	norganio
	(A) The post-weaning(B) Pregnancy(C) Lactation	perio	od	346.		e number of citonin in	amino acid resi	idues in
	(D) Old age				(A)		(B) 32	
340.	Marasmus occurs fr	om	deficient intake of		` '	51	(D) 84	
	(A) Essential amino ad			347.		citonin is synt		
	(B) Essential fatty acid(C) Calories	ds				Parathyroid glo Thyroid gland	nas	
	(C) Calories (D) Zinc				(C)	Pars intermedic	ı of pituitary	
041					(D)	Adrenal cortex		

348. Plasma calcium is lowered by

(B) Calcitonin

(D) Deoxycorticosterone

(A) Parathormone

(C) Aldosterone

341. Marasmus differs from Kwashiorkor in

not in marasmus

marasmus

the which of these following respect

(A) Mental retardation occurs in kwashiorkor but

(B) Growth is retarded in kwashiorkor but not in

349. α Cells of Islets of Langerhans secrete

- (A) Insulin
- (B) Glucagon
- (C) Somatostatin
- (D) Cholecystokinin

350. A/G ratio is

- (A) Strength of proteins
- ratio of serum proteins
- (C) ratio of ceruloplasmin
- (D) None of these

351. Insulin is made up of

- (A) A single polypeptide chain having 51 amino acid residues
- (B) A single polypeptide chain having 84 amino acid residues
- (C) A-chain having 21 and B-chain having 30 amino acid residues
- (D) A-chain having 30 and B-chain having 21 amino acid residues

352. The number of amino acid residues in preproinsulin is

- (A) 51
- (B) 84
- (C) 109
- (D) 119

353. Pre-proinsulin contains a signal sequence having

- (A) 9 amino acid residues
- (B) 19 amino acid residues
- 27 amino acid residues
- (D) 33 amino acid residues

354. The number of intra-chain disulphide bonds in pro-insulin:

- (A) One
- (B) Two
- (C) Three
- (D) Four

355. Pentagastrin is a

- (A) Naturally occurring form of gastrin
- (B) Inactive metabolite of gastrin
- (C) Active metabolite of gastrin
- (D) Synthetic form of gastrin

356. Secretion of gastrin is evoked by

- (A) Entry of food into stomach
- (B) Vagal stimulation
- (C) Lower aliphatic alcohols
- (D) All of these

357. Gastrin stimulates

- (A) Gastric motility
- (B) Gastric secretion
- (C) Both (A) and (B)
- (D) None of these

358. Secretin is made up of

- (A) 17 amino acids
- (B) 27 amino acids
- (C) 37 amino acids (D) 47 amino acids

359. Secretin causes all of the following except

- (A) Secretion of pancreatic juice
- (B) Secretion of bile
- Inhibition of gastric secretion
- Stimulation of intestinal motility

360. All of the following statements about cholecystokinin pancreozymin are true except

- (A) It is secreted by mucosa of small intestine
- It stimulates secretion of pancreatic juice rich in enzymes
- (C) It stimulates contraction of gall bladder
- (D) It inhibits gastric motility

361. All of the following statements about pancreatic somatostain are true except

- (A) It is secreted by δ cells of islets of Langerhans
- (B) It stimulates the secretion of gastrin
- (C) It inhibits the secretion of secretin
- (D) It inhibits the secretion of cholecystokininpancreozymin

362. Histidine is converted into histamine by

- (A) Carboxylation
- (B) Decarboxylation
- (C) Methylation
- (D) Hydroxylation

363. Histamine is synthesised in

- (A) Brain
- (B) Mast cells
- (C) Basophils
- (D) All of these

364. Histamine causes all the following except

- (A) Stimulation of gastric secretion
- Vasoconstriction (B)
- (C) Pruritus
- (D) Increase in capillary permeability

365. H₂-receptors are blocked by

- (A) Diphenhydramine (B) Mepayramine
- (C) Pyrilamine
- (D) Cimetidine

366. Serotonin is synthesised from 375. The most abundant protein in bones is (A) Serine (B) Phenylalanine (A) Collagen type I (C) Tyrosine (D) Tryptophan Collagen type II Collagen type III 367. All the following statements about Non-collagen proteins serotonin are true except (A) It causes vasolidatation 376. The most abundant collagen in cartilages is It causes bronchoconstriction It is metabolized by monoamine oxidase (A) Type I (B) Type II Its metabolite is 5-hydroxyindole acetic acid (C) Type III (D) Type IV 368. All the following statements about 377. Collagen and elastin have the following angiotensin are true except similarity: (A) Its precursor is an α₂-globulin (A) Both are triple helices (B) Its active form is an octapeptide (B) Both have hydroxyproline residues (C) It is a vasodilator (C) Both have hydrolysine residues (D) It increases the secretion of aldosterone (D) Both are glycoproteins 369. Methyl dopa decreases blood pressure by 378. Abnormal collagen structure is seen in all of the following except (A) Inhibiting the synthesis of catecholamines (B) Antagonising the action of aldosterone (A) I-cell disease Stimulating the release of renin Osteogenesis imperfecta (D) Inhibiting the breakdown of angiotensin (C) Menke's disease (D) Ehlers-Danlos sydrome 370. Binding of gamma-aminobutyric acid to its receptors in brain increases the 379. I-cell disease results from absence of the permeability of cell membrane to following from lysosomal enzymes: (A) CI-(B) Na+ (A) Signal sequence (C) K+ (D) Ca++ (B) Mannose-6-phosphate 371. Binding of acetylcholine to its receptors (C) Sialic acid increases the permeability of cell (D) A serine residue membrane to 380. In I-cell disease, lysosomal enzymes (A) Ca++ (B) Na+ (A) Are not synthesised (C) K+ (D) Na+ and K+ Are inactive 372. All of the following are glycoproteins Lack signal sequence except Cannot reach lysosomes (B) Albumin (A) Collagen 381. Renal glycosuria occurs due to (C) Transferrin (D) IgM (A) Increased filtration of glucose in glomeruli 373. Sialic acids are present in Increased secretion of glucose by renal (A) Proteoglycans (B) Glycoproteins tubular cells (C) Both (A) and (B) (D) None of these Decreased reabsorption of glucose by renal tubular cells 374. Hyaluronidase hydrolyses (D) Increased conversion of glycogen into glucose (A) Hyaluronic acid in tubular cells (B) Chondroitin sulphate 382. Haematuria can occur in (C) Heparin (D) Hyaluronic acid and chondroitin sulphate (A) Haemolytic anaemia

(D) Stone in urinary tract

(A) Acute glomerulonephritis

Stone in urinary tract

(B) Cancer of urinary tract

(C) Yellow fever

(B) Mismatched blood transfusion

383. Haematuria can occur in all of the following

(D) Mismatched blood transfusion 384. Chyluria can be detected by addition of the following to the urine: (A) Sulphosalicylic acid (B) Nitric acid (C) Acetic anhydride (D) Chloroform 385. Normal range of serum urea is (A) 0.6-1.5 mg/dl (B) $9-11 \, \text{mg/dl}$ (C) 20-45 mg/dl (D) 60-100 mg/dl 386. Normal range of serum creatinine is (A) 0.6-1.5 mg/dl (B) $9-11 \, \text{mg/dl}$ (C) 20-45 mg/dl (D) 60-100 mg/dl 387. Standard urea clearance is (A) 54 ml/min (B) 75 ml/min (D) 130 ml/min (C) 110 ml/min 388. Maximum urea clearance is (A) 54 ml/min (B) 75 ml/min (C) 110 ml/min (D) 130 ml/min 389. Average creatinine clearance in an adult man is about (A) 54 ml/min (B) 75 ml/min (C) 110 ml/min (D) 130 ml/min 390. Inulin clearance in an average adult man is about (A) 54 ml/min (B) 75 ml/min (C) 110 ml/min (D) 130 ml/min Q391. Among the following, a test of tubular function is (A) Creatinine clearance (B) Inulin clearance (C) PAH clearance (D) PSP excretion test 392. A simple way to assess tubular function is to withhold food and water for 12

hours and, then, measure

- (A) Serum urea
- (B) Serum creatinine
- (C) Urine output in one hour
- (D) Specific gravity of urine

393. Among the following, the most sensitive indicator of glomerular function is

- (A) Serum urea
- (B) Serum creatinine
- (C) Urea clearance
- (D) Creatinine clearance

394. All the following statements about inulin are correct except

- (A) It is completely non-toxic
- (B) It is completely filtered by glomeruli
- (C) It is not reabsorbed by tubular cells
- (D) It is secreted by tubular cells

395. Non-protein nitrogenous substances in blood include all of the following except

- (A) Urea
- (B) Uric acid
- (C) Creatinine
- (D) Inositol

396. Non-protein nitrogenous substances in blood are raised in

- (A) Starvation
- (B) Liver damage
- (C) Renal failure
- (D) All of these

397. Creatinine clearance is deceased in

- (A) Acute tubular necrosis
- (B) Acute glomerulonephritis
- (C) Hypertension
- (D) Myopathies

398. Serum amylase is increased in

- (A) Acute parotitis
- (B) Acute pancreatitis
- C) Pancreatic cancer (D) All of these

399. Maximum rise in serum amylase occurs in

- (A) Acute parotitis
- (B) Acute pancreatitis
- (C) Chronic pancreatitis
- (D) Pancreatic cancer

- (A) Acute parotitis (B) Acute pancreatitis
- C) Infective hepatitis (D) Biliary obstruction

401. Which one of the following metabolites is not directly produced in the hexose monophosphate pathway?

- (A) Fructose-6-phosphate
- (B) Dihydroxy acetone phosphate
- (C) CO₂
- (D) Erythrose-4-phosphate

402. Which one of the following statements concerning glucose-6-phosphate dehydrogenase deficiency is correct?

- (A) Young R.B.Cs, particularly reticulocytes, contain the highest enzyme activity cells show less enzyme activity
- (B) Glucose-6-P Dehydroglucose deficiency leads to disfuction of many tissues
- (C) G-6-p Dehydroglucose deficiency is due to a single deletion of a large sequence of DNA in the G-6-PD gene
- (D) G-6-PD deficiency is precipitated by ingestion of drugs such as aspirin

403. The phenomenon of inhibition of glycolysis by O₂ is termed as

- (A) Red drop
- (B) Pasteur effect
- (C) Michaelis effect
- (D) Fischer's effect

404. Seratonin is derived in the body from the following amino acid:

- (A) Phenylalanine
- (B) Histidine
- (C) Tryptophan
- (D) Serine

405. Which amino acid is a lipotropic factor?

- (A) Lysine
- (B) Leucine
- (C) Tryptophan
- (D) Methionine

406. Which among the following is a nutritionally essential amino acid for man?

- (A) Alanine
- (B) Glycine
- (C) Tyrosine
- (D) Tryptophan

407. The essential amino acids

(A) Must be supplied in the diet because the organism has lost the capacity to aminate the corresponding ketoacids

- (B) Must be supplied in the diet because the human has an impaired ability to synthesize the carbon chain of the corresponding ketoacids
- (C) Are identical in all species studied
- (D) Are defined as those amino acids which cannot be synthesized by the organism at a rate adequate to meet metabolic requirements

408. Which among the following is an essential amino acid?

- (A) Cysteine
- (B) Leucine
- (C) Tyrosine
- (D) Aspartic acid

409. Which among the following is a basic amino acid?

- (A) Aspargine
- (B) Arginine
- (C) Proline
- (D) Alanine

410. This amino acid cannot have optical isomers:

- (A) Alanine
- (B) Histidine
- (C) Threonine
- (D) Glycine

411. The amino acid which contains a guanidine group is

- (A) Histidine
- (B) Arginine
- (C) Citrulline
- (D) Ornithine

412. GABA(gama amino butyric acid) is

- (A) Post-synaptic excitatory transmitter
- (B) Post-synaptic inhibitor transmitter
- (C) activator of glia-cell function
- (D) inhibitor of glia-cell function

413. Sulphur-containing amino acid is

- (A) Glutathione
- (B) Chondroitin sulphate
- (C) Homocysteine
- (D) Tryptophan

414. The useful reagent for detection of amino acids is

- (A) Molisch reagent
- (B) Dichlorophenol Indophenol
- (C) Ninhydrin
- (D) Biuret

415. The amino acid which contains an indole group is

- (A) Histidine
- (B) Arginine
- (C) Glycine
- (D) Tryptophan

416. Sakaguchi reaction is answered by

- (A) Lysine
- (B) Ornithine
- (C) Arginine
- (D) Arginino succinic acid

417. The pH of an amino acid depends

- (A) Optical rotation (B) Dissociation constant
- (C) Diffusion coefficient(D) Chain length

418. When amino acids are treated with neutral formaldehyde, the pH of the mixture

- (A) Is not altered
- Increases (B)
- Decreases
- (D) First increases then decreases

419. Which among the following has an imidazole group?

- (A) Histidine
- (B) Tryptophan
- (C) Proline
- (D) Hydroxy proline

420. The amino acid exist as Zwitter ions when they are in

- (A) solid state
- (B) acidic solution
- (C) alkaline solution (D) neutral solution

421. Plasma proteins are isolated by

- (A) Salting out
- (B) Electrophoresis
- (C) Flourimetry
- (D) Both (A) and (B)

422. After digestion amino acids

- (A) Are absorbed into portal circulation
- (B) Are absorbed into lymph
- (C) Are excreted to the extent of 50%
- (D) Converted into glucose in the intestine

423. Cysteine has the formula:

- (A) CH₂SH
- (B) H₂N—CH₂—COOH
- (C) HS-CH2-CH(NH2)-COOH
- (D) S-CH₂-CH(NH₂)-COOH S-CH₂-CH(NH₂)-COOH

424. The compound having the formula

$$\rm H_2N-CO-NH-CH_2-CH_2-CH_2-CH-COOH$$
 is $\rm I$ $\rm NH_2$

- (A) Lysine
- (B) Glutamine
- (C) Serine
- (D) Citrulline

425. An amino acid which contains a disulphide bond is

- (A) Lysine
- (B) Methionine
- (C) Homocysteine
- (D) Cystine

426. One of the following has a phenolic group:

- (A) Histidine
- (B) Hydroxy lysine
- (C) Seratonine
- (D) Hydroxy proline

427. An amino acid not containing the usual— **COOH** group is

- (A) Alanine
- (B) Tryptophan
- (C) Methionine
- (D) Taurine

428. Branched chain amino acids are

- (A) Cysteine and cystine
- (B) Tyrosine and Tryptophan
- Glycine and Serine
- (D) Valine, Leucine and Isoleucine

429. A Zwitter ion is one which has in aqueous solution:

- (A) One positive charge and one negative charge
- (B) Two positive charges and one negative charge
- Two negative charges and one positive charge
- (D) No electrical charges at all

430. The amino acid which gives yellow colour with Ninhydrin in paper chromatography is

- (A) Tyrosine
- (B) Proline
- (C) Tryptophan
- (D) Alanine

431. Hydroxylation of Proline and Lysine in a protein is effected by

- (A) Vitamin B₁
- (B) Vitamin B₂
- (C) Vitamin B₆
- (D) Vitamin C

432. Millon's test is for identification of

- (A) Tyrosine
- (B) Tryptophan
- (C) Proline
- (D) Arginine

433. Hopkins-Cole test is for identification of

- (A) Tyrosine
- (B) Tryptophan
- (C) Arginine
- (D) Cysteine

434.	1. Collagen is very rich in		445.	The major end product of protein nitrogen			
	(A) Glycine	(B) Serine		metabolism in man is			
	(C) Aspartic acid	(D) Glutamic acid		(A) Glycine (B) Uric acid			
435.	All amino acids ar	e optically active except		(C) Urea (D) NH ₃			
	(A) Glycine (C) Threonine	(B) Serine (D) Tryptophan	446.	 An amino acid not involved in ur is 	ea cycle		
436.		ent amino acids form in r of amino acids present		(A) Arginine (B) Histidine (C) Ornithine (D) Citrulline			
	in protein:		447.	NH ₃ is detoxified in brain chiefly	as		
	(A) 20 (C) 40	(B) 25 (D) 35		(A) Urea (B) Uric acid (C) Creatinine (D) Glutamine			
437.	Enzyme catalyzed produces amino d	hydrolysis of proteins	448.	. In humans, NH ₃ is detoxified in li	ver as		
	(A) D (C) DL	(B) L (D) All of these		(A) Creatinine (B) Uric acid (C) Urea (D) Uronic acid	J		
/120		ups of amino acids are	449.	The body protein after eighteen	years		
430.	at least.	(B) 2		(A) Remains unchanged(B) Is decomposed only slightly at interv	vals of one		
	(C) 3	(D) 4		month			
439.	The neutral amine	o acid is		(C) Is in a constant state of flux(D) Is used only for energy requirement	nt		
	(A) Lysine (C) Leucine	(B) Proline (D) Histidine	450.	, , , , ,	hylating		
440.	The amino acid	containing hydroxyl		(A) Choline and betaine			
	group:			(B) Choline and δ-adenosyl methionine	€		
	(A) Alanine (C) Arginine	(B) Isoleucine (D) Threonine		(C) Betaine and δ-adenyosyl methionir(D) Dimehtyl glycine and betaine	ie		
441.	The sulphur conta	iining amino acid:	451.	. In the synthesis of 1 molecule of	urea in		
	(A) Homoserine(C) Methionine	(B) Serine (D) Valine		the Kreb's Hanseleit cycle, the nu ATPs required is			
442.	The basic amino a	ıcid:		(A) 1 (B) 2			
	(A) Glycine	(B) Leucine		(C) 3 (D) 4			
	(C) Histidine	(D) Proline	452.	. For biosynthesis of proteins			
443.	hormones:	hich synthesizes many		(A) Amino acids only are required(B) Amino acids and nucleic acids	only are		
	(A) Valine	(B) Phenyl alanine		required			
	(C) Alanine	(D) Histidine		(C) Amino acid, nucleic acids and ATI	P only are		
444.	Amino acids are i (A) Acetic acid	nsoluble in (B) Chloroform		required (D) Amino acids, nucleic acids, A			
	(C) Ethanol	(D) Benzene		enzymes and activators are requir	cu		

PROTEINS AND PROTEIN METABOLISM

453.	Transmethylation of guanido acetic acid gives		The first amino acid incorporated in a polypeptide in a ribosome of a human is			
	(A) Creatine phosphate (B) Creatinine		(A) N formyl methionine (B) Methionine (C) Phenyl alanine (D) Hydroxy lysine			
	(C) Choline (D) n-methyl nicotinamide	462.	The first amino acid incorporated in a polypeptide in a ribosome of a bacterium			
454.	54. The 2 energy rich compounds needed for protein biosynthesis are		(A) N formyl methionine (B) Methionine			
	(A) ATP and GTP (B) ATP and UTP		(C) Alamine (D) Glycine			
455	(C) ATP and CTP (D) ATP and TTP The following ketoacid is involved in	463.	The integrator between the TCA cycle and urea cycle is			
-55.	fixing dietary NH ₃ into amino acid:		(A) Fumarate (B) Malate (C) Pyruvate (D) Citrate			
	(A) Pyruvate(B) Oxalo acetate(C) Oxalo succinate(D) α-keto glutarate	464.	Bence jones proteinurial characterized by			
456.	The metabolite which sustains urea cycle is (A) Ornithine (B) Citrulline		(A) Non-heat coagulability (B) Heat coagulability at 100°C (C) Heat coagulability at 45 to 60°C (D) Precipitation at 25°C			
	(C) Carbamoyl phosphate (D) n-acetyl glutamate	465.	Bence Jones proteins may be excreted in urine of patients suffering from			
457.	Tetra hydroglolate can be freed from N ⁵ methyl tetrahydrofolate only by		(A) Tuberculosis (B) Diabetes mellitus (C) Multiple myeloma (D) Hyperthyroidism			
	(A) Nor epinephrine (B) Ethanol amine (C) Nicotinamide (D) Vitamin B ₁₂	466.	Xanthuric acid is an abnormal metabolite of			
458.	Neogenesis of methyl group is		(A) Xanthine (B) Uric acid			
	 (A) The availability of methyl group form δ adenosyl methionine (B) The availability of methyl group from betaine 	467.	(C) Tyrosine (D) Tryptophan Two nitrogen atoms of Urea in the urea			
	(C) Interaction between N ⁵ N ¹⁰ methylene tetra hydrofolate with a NAD+ dependent reductase		(A) NH ₃ (B) One from NH ₃ and one from aspartate			
	(D) Availability of methyl group from methyl B ₁₂		(C) One from NH ₃ and one from glutamate (D) One from NH ₃ and one from alanine			
459.	More creatinine is excreted by	140	·			
	(A) Adult males (B) Adult females (C) Children (D) Pregnant women	468.	Pyruvic acid can be obtained by transamination of alanine with (A) \(\alpha \text{- keto glutaric acid} \)			
460.	A growing peptide in a ribosome can not be shifted to the adjacent ribosome because		 (B) Acetoacetic acid (C) β-OH butyric acid (D) Phosphoenol Pyruvic acid 			
	 (A) It is firmly attached (B) It will get the amino acid cleaved (C) The gap between the ribosomes is too big for 		In the synthesis of 1 molecule of urea in the Kreb's Henseleit cycle the number of AMPs formed is			
	a shift (D) The adjacent ribosomes have different composition		(A) 1 (B) 2 (C) 3 (D) 4			

470. Formation of melanin from tyrosine requires the action of

- (A) Dopa decarboxylation
- (B) Diamine oxidase
- (C) Peroxidase
- (D) Tyrosinase

471. In one of the following the quality of the protein synthesized is affected:

- (A) Diabetes mellitus (B) Gont
- (C) Multiple myeloma (D) Primaquine sensitivity

472. Citrulline is an intermediate of

- (A) TCA cycle
- (B) Urea cycle
- (C) Pentose cycle
- (D) Calvin cycle

473. The semialdehydes are formed under the action of enzymes characterised as

- (A) Aldolases
- (B) Peptidyl lysyl oxidases
- (C) Collagenases
- (D) Elastases

474. Which of the following statement about the peptide bond is true?

- (A) It is a carbon-carbon bond
- (B) It has cis hydrogen and oxygen groups
- (C) It is planar
- (D) It has rotational freedom

475. Isoenzymes for a given reaction

- (A) Have different spedificities
- (B) Have identical affinities for the same substrate
- (C) Exhibit different electrophoretic motilities
- (D) Contain similar ratios of different polypeptide chains

476. The highest concentration of cystine can be found in

- (A) Melanin
- (B) Chondroitin sulphate
- (C) Myosin
- (D) Keratin

477. One round of Edman degradation of the peptide: H₂N— Gly—Arg—Lys—Phe—Asp— COOH would result in which of the following structures or their phenyl isothiocyanate derivatives?

(A)
$$H_2N$$
— Gly — Arg — $COOH + H_2N — Lys — Phe — Asp — $COOH$$

- (B) H₂N—Gly—Arg—Lys—Phe—COOH + Asp
- (C) H₂N—Arg—Lys—Phe—Asp—COOH + Gly
- (D) H_2N —Gly—Arg—Lys— $COOH + <math>H_2N$ —Phe—Asp—COOH

478. Which of the following techniques is used to separate proteins based upon differences in their mass?

- (A) Isoelectric focusing
- (B) Dialysis
- (C) SDS-gel Electrophoresis
- (D) Western blotting

479. The greatest buffering capacity at physiologic pH would be provided by a protein rich in which of the following amino acids?

- (A) Lysine
- (B) Histidine
- (C) Aspartic acid
- (D) Valine

480. Which one of the amino acids could serve as the best buffer at pH 7?

- A) Glutamic acid
- (B) Arginine
- (C) Valine
- (D) Histidine

481. Which one of the following statements concerning glutamine is correct?

- (A) Contains three tetratable groups
- (B) Is classified as an acidic amino acid
- (C) Contains an amide group
- (D) Migrates to the cathode during electrophoresis at pH 7.0

482. One of the given example is an amino acid:

- (A) Oh-Lysine
- (B) Protein
- (C) Leucine
- (D) Serine
- 483. The lone pair of electrons at one of the ring nitrogens in the given amino acid makes a potential ligand, which is important in binding the iron atoms in hemoglobin:
 - (A) Tryptophan
- (B) Threonine
- (C) Histidine
- (D) Serine

484. The amino acid which is not optically active is

- (A) Alanine
- (B) Glycine
- (C) Glutamine
- (D) Lysine

485.	Optically active compounds are capable of (A) Different reactions (B) Rotating plane of polarized light (C) Showing same chemical properties (D) None of these	494.	In prehepatic jaundice, protein flocculation test is (A) Normal/weekly positive (B) Usually positive (C) Negative		
486.	The reference compound for absolute configuration of optically active compound is (A) Alanine (B) Lactic acid (C) Glyceraldehyde (D) Dihydroxy acetone		(D) None of these Side chains of all amino acids contain aromatic rings except		
	All the standard amino acids except the following have one chiral 'c' atom: (A) Threonine, Isoleucine (B) Isoleucine, Alanine (C) Threonine, Alanine (D) Alanine, Glutamine	496.	produces (A) Blue colour complex (B) Red colour (C) Yellow colour		
488.	The role of complement proteins: (A) Defense (B) Helps immunity of the body (C) Not predicatable (D) None of these	497.	(D) Purple colour Bonds that are formed between two cysteine residues is (A) Disulphide (B) Peptide (C) Electrostatic (D) Hydrophobic		
489.	Optical isomers that are mirror images and non superimposable are called (A) Diastereomers (B) Euantiomers (C) dl isomers (D) Stereomers	498.	The acid amide of Aspartic acid is (A) Glutamine (B) Arginine (C) Aspargine (D) Ornithine		
490.	Living cells have the unique ability to synthesize only the form of optical isomer due to (A) 'd' form, stereospecific enzymes (B) 'l' form stereospecific enzymes (C) 'd' form, DNA (D) 'l' form, DNA	499. 500.	ionizing 'R' group with a pK' near 7 and is important in the active site of some enzymes: (A) Arginine (B) Cystein (C) Cystine (D) Histidine		
491.	Isoelectric pH of an amino acid is that pH at which it has a		amino acid: (A) Proline (B) Leucine		
492.	(A) Positive charge (B) Negative charge (C) No net charge (D) All of these Albuminoids are similar to	501.	(C) Arginine (D) Histicline A hexa peptide with 5 aspartic acid would have a net charge at pH 7:		
	(A) Albumin (B) Globulin (C) Both A and B (D) None of these		(A) Neutral (B) Positive (C) Negative (D) Not predictable		
493.	Abnormal chain of amino acids in sickle cells anaemia is (A) Alpha chain (B) Beta chain (C) Gama chain (D) Delta chain	502.	In the genetic disorder of cystinuria, the patient excretes large quantities of cystine in their urine and its low solubility causes crystalline cystine to precipitate as stones in kidneys. The remedy involves		

ingesting Na HCO₃. Reaction of this treatment is

- (A) NaHCO₂ combines with cystine
- (B) NaHCO₃ raises the pH above the isoelectric point of cystine
- (C) NaHCO₃ prevents stone formation by hydrolysis of cystine to cysteine
- None of these

503. In the following reaction, Alanine acts as a

- (A) Acid
- (B) Base
- (C) Zwitter ion
- (D) None of these

504. Amino acids excepting histidine are not good buffering agents in cell because

- (A) They exist as zwitter ions
- Their pk and not in the physiological pH of a
- Only Histidine has pk of its R group at 6.0 unlike the others which have at a different pH
- (D) None of these

At neutral pH Alanine has the following 505. structure:

(A)
$$H_2N-C-COOH$$
 (B) H_3^+ $N-C-CO\bar{O}$ CH_3

(C)
$$H_2N-C-CO\bar{O}$$
 (D) ${}^{\dagger}H_2N-C-CO\bar{O}$ (CH₂

506. The amino acids in which the R groups have a net positive charge at pH 7.0 are

- (A) Lysine, Arginine, Histidine
- (B) Lysine, Aspargine
- (C) Histidine, Aspargine
- (D) Glutamine, Arginine

507. Apolipoproteins are

- (A) AI
- (B) Al1
- (C) C1
- (D) All of these

The amino acid which has a pK near 4 and thus is negatively charged at pH 7 is

- (A) Alanine
- (B) Glutamic acid
- (C) Glutamine
- (D) Aspargine

509. The side chain of which of the following amino acid contain sulphur atom?

- (A) Methionine
- (B) Threonine
- (C) Leucine
- (D) Tryptophan

510. Which of the followings gives a positive test for Ninhydrin?

- (A) Reducing sugars (B) Triglycerides
- Alpha aminoacids (D) Esterified Fats

511. In glutathione (a tripeptide) is present apart from Glutamic acid and cysteine:

- (A) Serine
- (B) Glycine
- (C) Leucine
- (D) Phenyl alanine

512. 2-Amino 3-OH propanoic acid is

- (A) Glycine
- (B) Alanine
- (C) Valine
- (D) Serine

513. All amino acids have one asymmetric carbon atom, except

- (A) Arginine
- (B) Aspargine
- (C) Histidine
- (D) Glycine

Number of amino acids present in the plant, animal and microbial proteins:

- (A) 20
- (B) 80
- (C) 150
- (D) 200

515. Immunoglobulins are characterized by their

- (A) Heavy chains
- Molecular weight
- (C) Light chains
- Electrophoretic behaviour

516. The bond in proteins that is not hydrolysed under usual conditions of denatu-

- Hydrophobic bond (B) Hydrogen bond (A)
- Disulphide bond (D) Peptide bonds
- 517. If the amino group and a carboxylic group of the amino acid are attached to same carbon atom, the amino acid is called
 - (A) Alpha
- (B) Beta
- (C) Gamma
- (D) Delta

(D) Urea cycle

518. Zymogen is 528. Physiologically active configuration of amino acids: (A) An intracellular enzyme (A) L (B) Serum enzyme (B) D (C) A complete extracellular enzyme (C) For some amino acids it is either of two (D) An inactivated enzyme (D) Neither L nor D 519. SGOT level in a adult is 529. Cystine is synthesized from (A) 5-40 units/dl (B) 1-4 units/dl (A) Cysteine (B) Methionine (D) 50-100 units/dl (C) 5-15 units/dl (C) Arginine (D) Leucine 520. Activity of ceruloplasmin shown in vitro: 530. The major constituent of the proteins of (A) Reductase (B) Hydrolase hair and keratin of skin: (C) Ligase (D) Oxidase (A) Arginine (B) Cysteine 521. Increased serum alanine during fasting is (C) Glycine (D) Arginine due to 531. NH₃ is removed from brain mainly by Breakdown of muscle proteins (A) Creatinine formation Decreased utilization of non essential amino acids Uric acid production (C) Leakage of aminoacids to plasma Urea formation (C) (D) Impaired renal function Glutamine formation Mechanism by which NH₃ is removed from 522. The following 4 amino acids are required **532.** the kidneys is for completion of urea cycle except (A) Urea formation (A) Aspartic acid (B) Arginine (C) Ornithine (D) Glycine Uric acid formation Creatinine formation 523. Number of amino acids present in the (D) None of these dietary proteins: (B) 23 (A) 22 533. Low density plasma proteins are rich in (C) 20 (D) 19 (A) Chylomicrons (B) Cholesterol (C) Triglycerides (D) Phospholipids 524. Urea synthesis takes place in (A) Blood (B) Liver 534. Transcortins are (C) Kidney (D) Heart (A) Mucoproteins (B) Glycoproteins (C) Metalloproteins (D) Lipoproteins 525. All followings are ketogenic aminoacids except 535. Proteins that carries Iron into different (A) Leucine (B) Isoleucine tissues is (D) Glycine (C) Phenyl alanine (A) Ceruloplasmin (B) Trans cortin (C) Mucoproteins (D) Glycoproteins 526. The amino acid containing an indole ring: (A) Tryptophan (B) Arginine 536. Naturally occurring amino acids have (C) Threonine (D) Phenylalanine (A) L-Configuration (B) D-Configuration (C) DL-Configuration (D) None of these 527. Histidine is converted to histamine through the process of 537. Abnormal chain of aminoacids in sickle (A) Transamination cell anemia is (B) Decarboxylation (A) B-chain (B) β-chain (C) Oxidative deamination (C) y-chain (D) r-chain

538.		lietary deficiend otinate leads to	cy o	f tryptophan and	547.		e amino acid wh oup is	ich (contains an indole
	(A)	Beri Beri	(B)	Xerophthalmia		(A)	Histidine	(B)	Arginine
	(C)	Anemia	(D)	Pellegra		(C)	Cystine	(D)	Tryptophan
539.	Which one of the following is an essential amino acid?			548.	From two amino acids peptide bond formation involves removal of one				
		•		Tyrosine Proline		(A)	lecule of Water Carbondioxide		Ammonia
540.	One of the following amino acid is solely ketogenic:			549.	Pol	ymers of more		Carboxylic acid 100 amino acids	
		Lysine Valine		Alanine Glutamate		(A)	Proteins Both (A) and (B)		Polypeptides
541.		ng with CO ₂ , NI d that is needed		nd ATP, the amino urea cycle is	550.		e example of glo		
		Alanine Aspartate		Isoleucine Glycine		, ,	Leucosin Oryzenin		Tuberin Legunelin
542.		electric pH of an	am	ino acid is that pH	551.		e example of sclo	-	oroteins: Giladin
		Positive charge No charge		Negative charge None of these	552		Salmine e example of ph	(D)	Elastin
543.	Wh	nich of the fo rogen atoms	llov	ving contributes	332.	(A)	Mucin Ovomucoid	(B)	Ovovitellin Tendomucoid
		imidine rings?			553.	The	example of me	tall	oproteins:
	(B)	Aspartate Carbamoyl phosp	hate	;			Siderophilin Elastin		OREES mucoid All of these
		CO ₂ Glutamine			554.	The	e example of chr	ome	oprotein:
544.	Wh	ich amino acid i		lipotropic factor?		٠,	Salmine Zein		Catalase Gliadin
		Lysine		Lecuine	555.	Dec	amination is	(of amino group.
545.	Wh			Methionine protein is rich in		(A)	Removal Supplementation	(B)	Addition
	(A)	teine? Elastine		Collagen	556.		oteins produce oteins by	ро	lypeptides from
546.			s pre	Keratin		(A) (C)	Oxidizing Hydrolyzing		Reducing None of these
	of β-chain of Hbs instead of glutamate in HbA?		557.				ret reagent which		
	(A) (C)	Cysteine Aspartate		Valine Glutamate			uggestive of 2 c Hydrogen bonds Disulphide bonds	(B)	

(C) Salt bonds

(D) Non-polar bonds

558.	The disulphide bond is not broken under the usual conditions of	568.	<u> </u>		
	(A) Filtration (B) Reduction (C) Oxidation (D) Denaturation		(A) Two α and two γ chains(B) Two β and two γ chains(C) Both (A) and (B)		
559.	 Insulin is oxidized to separate the protein molecule into its constituent polypeptide chains without affecting the other part of the molecule by the use of 		(D) None of these When haemoglobin takes up oxygen there is a change in the structure due to		
	(A) Performic acid (B) Oxalic acid (C) Citric acid (D) Malic acid		the moving closer together of (A) β-chains (B) β-chains (C) γ-chains (D) α and γ chains		
560.	Each hydrogen bond is quite (A) Weak (B) Strong (C) Both (A) and (B) (D) None of these	570.	The hydrogen bonds in the secondary and tertiary structure of proteins are directly attacked by		
561.	A coiled structure in which peptide bonds are folded in regular manner by (A) Globular proteins (B) Fibrous proteins		(A) Salts (B) Alkalies (C) Detergents (D) All of these		
562.	(C) Both (A) and (B) (D) None of these In many proteins the hydrogen bonding produces a regular coiled arrangement	571.	The hydrogen bonds between peptide linkages are interfered by (A) Guanidine (B) Uric acid (C) Salicylic acid (D) Oxalic acid		
	called (A) α-helix (B) β-helix (C) Both (A) and (B) (D) None of these	572.	The digestability of certain denatured proteins by proteolytic enzymes		
563.	Many globular proteins are stable in solution although they lack in		(A) Decreases (B) Increases (C) Normal (D) None of these		
	(A) Hydrogen bonds(B) Salt bonds(C) Non-polar bonds(D) Disulphide bonds	573.	proteins by denaturation are frequently		
564.	Each turn of α -helix contains the number of amino acids		(A) Not changed (B) Changed (C) Both (A) and (B) (D) None of these		
	(A) 2.8 (B) 3.2 (C) 3.4 (D) 3.6	574.	In case of severe denaturation of protein, there is		
565.	The distance travelled per turn of α-helix in nm is (A) 0.34 (B) 0.44 (C) 0.54 (D) 0.64		 (A) Reversible denaturation (B) Moderate reversible denaturation (C) Irreversible denaturation (D) None of these 		
566.	acids like (A) Proline (B) Arginine	575.	When egg albumin is heated till it is coagulated, the secondary and tertiary structures of the proteins are completely lost resulting in a mixture of randomly arranged		
567.	 (C) Histidine (D) Lysine α-helix is stabilized by (A) Hydrogen bonds (B) Disulphide bonds 		(A) Dipeptide chains (B) Tripeptide chains (C) Polypeptide chains (D) All of these		

576.		carbohydrate is in the e units, the number of	586.	If one amino ac absorption of and (A) Slightly accelera	
	(A) 50–100 (C) 400–500	(B) 200–300 (D) 600–700		(B) Moderately acc (C) Highly accelera	elerated
577.	The milk protein in infants is digested	n the stomach of the bv		(D) Retarded	
		(B) Trypsin	587.		nditions, food proteins adily digested upto the
578.	of	aid to be when absence		(A) 67 to 73 (C) 82 to 89	(B) 74 to 81 (D) 90 to 97
		(B) Both pepsin and HCl(D) All of these	588.	By overheating to	he nutritional value of
579.	• •	(B) Pernicious anemia		(A) Increased (C) Unchanged	(B) Decreased (D) None of these
580.	(C) Both (A) and (B) In small intestine peptide linkages co	trypsin hydrolyzes	589.	and intestinal mu	the protein of the liver cosa are broken down
		(B) Histidine(D) Aspartate		and resynthesised(A) 10 days(C) 15 days	(B) 12 days (D) 18 days
581.		the small intestine linkages containing	590.	, ,	tibody protein is about
		(B) Pheynl alanine (D) Methionine		(A) 4 weeks (C) 2 weeks	(B) 3 weeks (D) 1 week
582.		ase B in the small	591.	Protein anabolism	n is stimulated by
	(A) Leucine	(B) Isoleucine		(A) ACTH (C) Glucagon	(B) Testosterone(D) Epinephrine
583.	(C) Arginine The transport of am active processes of	(D) Cysteine ino acids regulated by different numbers:	592.		of protein is integrated hydrate and fat through
	(A) 1 (C) 3	(B) 2 (D) 4		(A) Oxaloacetate(C) Isocitrate	(B) Citrate(D) Malate
584.	The third active protransport involves	ocess for amino acids	593.		and breaking down of concerned with the
	(A) Acidic amino acid(B) Basic amino acids(C) Neutral amino ac	3		(A) Carbohydrate (C) Protein	(B) Lipid (D) Minerals
	(D) Sulphur containing	g amino acids	594.		bstracted from the liver
585.	The neutral amino need	acids for absorption		are not utilized synthesis but are	for repair or special broken down to
	(A) TPP (C) NAD+	(B) B ₆ – PO ₄ (D) NADP+		(A) Keto acids (C) Water	(B) Sulphur dioxide (D) Ammonia

595.	from the tissues ar	mino acids abstracted re either used up by the	603.	. The transaminase activity needs the coenzyme:
	tissue or in the live			(A) ATP (B) $B_6 - PO_4$
	(A) Ammonia (C) Ammonium salts	(B) Urea (D) Uric acid		(C) FAD+ (D) NAD+
596		ide the nitrogen for the	604.	
570.	synthesis of	ide inie inin ogen ioi inie		(A) Irreversible process (B) Reversible process (C) Both (A) and (B) (D) None of these
	(A) The bases of the	phospholipids	605.	Most amino acids are substrates for
	(B) Uric acid (C) Glycolipids			transamination except
	(D) Chondroitin sulpl	hates		(A) Alanine (B) Threonine (C) Serine (D) Valine
597.		of all proteins ingested	606	Oxidative conversion of many amino
	ments is called	the essential require-	000	acids to their corresponding -ketoacids occurs in mammalian:
	(A) Exogenous metal			(A) Liver and kidney (B) Adipose tissue
	(B) Endogenous met (C) Both (A) and (B)	adolism		(C) Pancreas (D) Intestine
	(D) None of these		607.	The α-ketoacid is decarboxylated by H ₂ O
598.		ng amino acids after ces a substance which		forming a carboxylic acid with one carbor atom less in the absence of the enzyme:
	is excreted:	ces a substance which		(A) Catalase (B) Decarboxylase
	(A) SO ₂	(B) HNO ₃		(C) Deaminase (D) Phosphatase
	(C) H_2SO_4	(D) H_3PO_4	608.	 The activity of mammalian L-amino acid oxidase, an FMN – flavo protein, is quite
599.	Ethereal sulphate i	is synthesized from the		(A) Slow (B) Rapid
		(B) Acidic		(C) Both (A) and (B) (D) None of these
	, ,	(D) Sulphur containing	609.	. From dietary protein as well as from the
600.	The amino acids formation:	required for creatine		urea present in fluids secreted into the gastrointestinal tract intestinal bacterio
	(A) Glycine	(B) Arginine		produce (A) Carbondioxide
	(C) Methionine	(D) All of these		(B) Ammonia
601.	the end product o	er ureotelic organisms, of amino acid nitrogen		(C) Ammonium sulphate (D) Creatine
	metabolism:	(D) Karan Laden	610.	. The symptom of ammonia intoxication
	(A) Bile acids (C) Urea	(B) Ketone bodies (D) Barium sulphate		includes
602.		of amino acid nitrogen		(A) Blurring of vision (B) Constipation (C) Mental confusion (D) Diarrhoea
002.	metabolism in u	uricotelic organisms		, ,
	(reptiles and birds		011.	 Ammonia intoxication symptoms occur when brain ammonia levels are
	(A) Bilirubin (C) Uric acid	(B) Urea (D) Biliverdin		(A) Slightly diminished (B) Highly diminished
	, ,	, ,		(C) Increased (D) All of these

612.		ion by the kidney is	621.	In se	evere acidosis,	the	output of urea is
	depressed in (A) Acidosis (C) Both (A) and (B)	(B) Alkalosis (D) None of these	/00	(C)	Highly increased		Slightly increased Moderately increased
613.		ed as ammonium salts idosis but the majority	622.	(A)	mia occurs in Cirrhosis of the live Diabetes mellitus		Nephritis Coronary thrombosis
	(A) Phosphates	(B) Creatine	623.				ea cycle disorder is
614.	(C) Uric acid Synthesis of aluta	(D) Urea mine is accompanied			Mental retardation Diarrhoea		Oedema
	by the hydrolysis		624.	The	sparing action	of r	methionine is
	(A) ATP (C) TPP	(B) ADP(D) Creatin phosphate			Tyrosine Arginine		Cystine Tryptophan
615.		ijor metabolism for nia is the formation of	625.		t ₄ aminates (amine requirin		tamate to form
	(A) Glutamate	(B) Aspartate		(A)	K+	(B)	Na ⁺
	(C) Asparagine	(D) Glutamine		` '	Ca ⁺⁺	(D)	Mg ⁺⁺
616.		nate synthetase struc- change in the presence	626.		tathione is a	(5)	-
	of				Dipeptide Polypeptide		Tripeptide None of these
	(A) N-Acetyl glutama (B) N-Acetyl Aspartat		627.		following are		njugated proteins
	(C) Neuraminic acid(D) Oxalate			(A)	Nucleoproteins		Proteoses
617.	The biosynthesis of the Liver:	Urea occurs mainly in	628.		Metalloproteins x-amino acids l		Flavoproteins e one asymmetric
	(A) Cytosol				oon atom excep		,
	(B) Microsomes				Arginine		Glycine
	(C) Nucleus (D) Mitochondria		400		Aspartic acid		Histidine
618.	• •	is synthesized at the	029.		nger of amino d nals and micro		s present in plants, proteins:
010.	expense of the			(A)	20	(B)	80
	(A) 2	(B) 3			150		200
	(C) 4	(D) 5	630.	-	-	of (H	ID) lipoproteins is
619.	liver involving the n	occurs mainly in the number of amino acids:		(B)	0.94 gm/ml 0.94-1.006 gm/r		
	(A) 3 (C) 5	(B) 4 (D) 6		(C) (D)	1.006-1.063 gm/ 1.063-1.21 gm/l	/ml	
620.	The normal daily o urine in grams:	utput of Urea through	631.				that is not broken of denaturation:
	(A) 10 to 20	(B) 15 to 25			Hydrophobic bond	d (B)	Hydrogen bond
	(C) 20 to 30	(D) 25 to 35		(C)	Disulphide bond	(D)	Peptide bonds

								_	
632.	Pla	sma proteins ac	t as	;	642.			am	ino acids in sickle
				Immunoglobulins			anaemia is		
	(C)	Reserve proteins	(D)	All of these			Alpha chain		Beta chain
633.	Gro	oup that reacts i	n th	e Biuret test:		(C)	Delta chain	(D)	Gama chain
	(A)	Peptide	(B)	Amino group	643.	_	nber of chains i	n glo	bin part of normal
		Carboxylic group		0 1		Hb:			
624		, .		mino acid cysteine		٠,	1	(B)	
034.		inroprossiae ies duces a:	1, a	mino acia cysteine		(C)	3	(D)	4
	•		(R)	Blue colour	644.	The	PH of albumin	is	
		Yellow colour				, ,	3.6	(B)	4.7
						(C)	5.0	(D)	6.1
635.		tein present in octure known a		moglobin has the	645.		hydrin reaction l evolves CO ₂ w		es a purple colour
	(A)	Primary	(B)	Secondary			Peptide bonds		Histamine
	(C)	Tertiary	(D)	Quarternary			Ergothioneine		
636.	Iso	electric pH of an	am	ino acid is that pH	646.		•		oteins involves
	at v	which it has a		_	0.00		akdown of	Ρ.	
	(A)	Positive charge	(B)	Negative charge		(A)	Secondary structu	ıre(B)	Tertiary structure
	(C)	Nil net charge	(D)	None of these			Quarternary struc		-
637.		uminoids are si			647.		denaturation of		roteins, the bond
	(A)	Albumin	(B)	Globulin					D :: 1 1
	(C)	Both (A) and (B)	(D)	None of these			Disulphide bond Hydrogen bond		•
638.	Opt	tical isomers of	all	aminoacids exist			, 0		
	exc	ept			648.				ed protein can be arious methods.
	(A)	Glycine	(B)	Arginine				ıg v	arious memoas.
	(C)	Alanine	(D)	Hydroxy proline			Solubility curve Molecular weight		
639.	Pro	teins that consti	itute	e keratin, collagen			Ultra Centrifugati		
0021		l elastin in body					Immuno Ractivity	OH	
	(A)	Protamines	(B)	Phosphol proteins			All of these		
	(C)	Scleroproteins			649.			ماد ا	n the line or in sat-
640		tematic name o		•	047.				es the following
040.	-		-	Sille is			lity of protein.		.
		Amino acetic acio				(A)	Non homogenity	(B)	Purity
	(B)	2,6 diaminohexa		acia		(C)	Homogeneity	(D)	None of these
	(C)	Aminosuccinic aci		:4	650.	A s	harp moving l	oour	ndary is obtained
	(D)	2-Aminopropanoi				bet	ween the pur	e so	lvent and solute
641.				wing amino acids		con	taining layer in	1	
		tain aromatic ri	_	-		(A)	Chromatography		
		Phenyl alanine	٠,	Alanine		(B)	Immuno Reactivity		
	(C)	Tyrosine	(D)	Tryptophan		(C)	Ultra Centrifugati	on	
						(D)	Solubility curve		

651.	The antibodies raised against a pure protein will show only one sharp spike on this technique: (A) Solubility curve (B) Solvent precipitation (C) Molecular weight determination (D) Immuno electrophoresis	658.	The sorting out of molecules according to size and shape may be adapted to protein purification in this technique: (A) Adsorption chromatography (B) Gel filtration chromatography (C) Paper chromatography (D) None of these
652.	This technique takes the advantage of the fact that each protein has different pH at which it is electrically neutral i.e., its isoelectric pH: (A) Isoelectric focussing (B) Immunoel Ectro Phoresis (C) Chromatography (D) HPLC		Frequently employed materials for the adsorption chromatography of proteins include (A) High capacity supporting gel (B) Starch blocks (C) Calcium phosphate gel alumina gel and hydroxy apatite (D) All of these
653.	The following technique makes use of the difference in net charges of proteins at a given pH: (A) Thin layer chromatography (B) lon exchange chromatography (C) High performance liquid chromatography (D) Paper chromatography		The solubility of most proteins is lowered at high salt concentrations is called as (A) Salting in process (B) Salting out process (C) Isoelectric focussing (D) None of these Phenylalanine, ornithine and methionine are involved in the biogenesis of (A) Lysergic acid (B) Reserpine
654.	The ratio of the distance moved by a compound to the distance moved by the solvent frent is known as its (A) PI value (B) Linking number (C) Rf value (D) Gold number	662.	(C) L-Hyoscyamine (D) Papaverine All the following diuretics inhibit the carbonic anhydrase except (A) Acetazolamide (B) Bumetanide (C) Furosemide (D) Ethacrynic acid
655.	The movement of charged particles towards one of the electrodes under the influence of electrical current is (A) Gel filtration (B) Molecular sieving (C) Gas liquid chromatography (D) Electrophoresis		Protein is a polymer of (A) Sugars (B) Phenols (C) Amino acids (D) Carboxylic acids All the following amino acids are optically active except (A) Tryptophane (B) Phenylalanine (C) Valine (D) Glycine
656.	An anion exchange resin linked to cellulose backbone is (A) DEAE cellulose (B) CM cellulose (C) Sephadex (D) None of these	665.	Proteinous substances which catalyze biochemical reactions are known as (A) Activators (B) Catalysts (C) Enzymes (D) Hormones
657.	A cation exchange resin linked to cellulose backbone is	666.	Insulin is a protein which controls (A) Blood clotting (B) Metabolic pathway

(C) Digestion

(D) Kreb's cycle

(A) CM-cellulose

(C) Starch

(B) DEAE cellulose

(D) Biogel

667.	Proteins which are responsible for defence mechanism are called	677.	Protein deficiency disease is known as (A) Cushing's disease
	(A) Antimetabolites (B) Antibodies (C) Antimycins (D) Apoproteins		(B) Fabry's disease (C) Parkinson's disease
668.	When the net charge on an amino acid is zero, the pH is maintained as?		(D) Kwashiorkor and marasmus
	(A) 4.5 (B) 11.2	678.	A vegetable source of protein is (A) Egg plant
669.	(C) 7.0 (D) 9.1 Isoelectric point of amino acids is used for		(B) Soyabean (C) Tree of the Heaven
	(A) Crystallisation (B) Precipitation (C) Solubility (D) Reactivity	670	(D) Devil's dung Oxaloacetate is converted to aspartic acid
670.	Xanthoproteic test is positive in proteins containing	07 7.	by
	(A) Sulphur amino acids		(A) Reductase (B) Oxidase (C) Transminase (D) Catalase
	(B) α-Amino acids(C) Aromatic amino acids	680.	Deficiency of biotin results in decrease in
471	(D) Aliphatic amino acids All α-amino acids give positive		(A) Amino acid synthesis (B) Lipid synthesis
0/1.	(A) Million's test (B) Biurete test		(C) Kidney(D) Fatty acid synthesis
	(C) Xanthproteic test (D) Ninhydrine test	681.	The precursor of bile salts, sex hormone
672.	N-terminal amino acids of a polypeptide are estimated by		and vitamin D is (A) Diosgenin (B) Cholesterol
	(A) Edmann reaction (B) Sanger's reagent		(C) Campesterol (D) Ergosterol
. = 0	(C) Formaldehyde test (D) Ninhydrine reaction	682	,
6/3.	Million's test is positive for (A) Phenylalanine (B) Glycine		(A) Non-essential fatty acids(B) Essential fatty acids
	(C) Tyrosine (D) Proline		(C) Cerebrosides
674.	Indole group of tryptophan responses positively to		(D) Phospholipids
	(A) Glyoxylic acid (B) Schiff's reagent	683	Biuret test is specific for (A) Two peptide linkage
	(C) Biuret test (D) Resorcinol test		(B) Phenolic group
675.	Guanidine group of argentine gives positive test with		(C) Imidazole ring (D) None of these
	(A) Lead acetate(B) Sakaguchi reagent(C) Tricholoroacetic acid	684.	Most of calcium is present in bone, but 2% present in soft tissue and the blood is called
	(D) Molisch's reagent		(A) Calcinated blood (B) Solidified blood
676.	Thiol group of cysteine gives red colour with	685	(C) Physiological blood (D) Colloidal blood Calcium present with protein is known as
	(A) Sodium acetate	005.	free while in salt form is called as
	(B) Lead acetate		(A) Bound (B) Precipitated
	(C) Sodium nitroprusside(D) Barfoed's reagent		(C) Solid (D) Polymorphs

686.	transfer of phosp acid:	ions help in enzymatic phate from ATP to pyruvic	695.	Platelets contain an enzyme which has important role in clotting in blood. This enzyme is known as
	(A) Sodium (C) Magnesium	(B) Calcium (D) Potassium		(A) Cholinesterase (B) Transaminase (C) Decarboxylase (D) Thrombokinase
687.	fies enzymes int		696.	Treatment of pentoses with a concentrated mineral acid yields a cyclic aldehyde
	(A) Three classes(C) Four classess	(B) Six classes (D) Ten classes		known as (A) Pentaldehyde (B) Cyclopental
688.	explain the effe	nten equation is used to ct of substrate concentra-	697.	(C) Hexaldehyde (D) Furfural Isoelectric pH is that pH at which protein
	tion on (A) Carbohydrate (C) Lipid	(B) Enzyme (D) Protein	0220	is electrically: (A) Neutral (B) Anionic
689.		an enzyme has maximum		(C) Cationic (D) None of these
007.	activity is know		698.	About 6.25 g of haemoglobin is produced
	(A) Isoelectric pH (C) Low pH	(B) Optimum pH (D) High pH		and destroyed in the body each day and the total amount of haemoglobin in a normal healthy 70 kg weighing male adult is
690.		proteins to amino acids, arbohydrates and fatty s is known as		(A) 250 g (B) 150 g (C) 100 g (D) 70 g
	(A) Anabolism (C) Catabolism	(B) Metabolism (D) Cretinism	699.	Pancreatic juice contains all of the following except
691.	liberated in the	is of glucose the energy e absence of oxygen is		(A) Trypsinogen (B) Lipase (C) Cholecystokinin (D) Chymnotrypsinogen
	known as (A) Oxygenesis		700.	The milk protein in the stomach in an adult is digested by
	(B) Glyconeogene (C) Glycogenolysis (D) Anaerobic ferr	S		(A) Pepsin (B) Rennin (C) HCl (D) Chymotrypsinogen
692.	Deficiency of ur	ea cycle enzymes results n of citrulline argininosuc-	701.	Carboxypeptidase, an enzyme of pancreatic juice, contains
	cinate arginine i	n the liver resulting in in- ration of in the blood.		(A) Mn (B) Zinc (C) Magnesium (D) Manganese
	(A) Calcium (C) Ammonia	(B) Sodium (D) Lipid	702.	The zymogen from trypsinogen of pancreatic juice is converted to active
693.	Accumulation o known as	f trytophan in blood is		trypsin by (A) Peisin (B) Enterocrinin
	, ,	use (B) Wilson's disease ease (D) Hartnup's disease	703.	(C) Enterokinase (D) Rennin Inactive zymogens are precursors of all
694.	Lymphocytes armation of	e responsible for the for-	2 00.	the following gastrointestinal enzymes except
	(A) Serum (C) Antibody	(B) Plasma (D) Calcium		(A) Carboxypeptidase (B) Pepsin(C) Amino peptidase (D) Chymotrypsin

704.	Rennin acts on case presence of	ein of milk in infants in	713.		milk protein i		ne stomach of the
	(A) Mg ⁺⁺ (C) Co ⁺⁺	(B) Zn ⁺⁺ (D) Ca ⁺⁺		(A) (C)	Pepsin Chymotrypsin		Trypsin Rennin
705.	_	ire true about phenyl-	<i>7</i> 14.	Pro	tein anabolism	is s	timulated by
		enylalanine hydroxylase			ACTH Glucagon		Testosterone Epinephrine
	(B) Mental retardation (C) Increased urinary phenyl pyruvic ac	ry excretion of p-hydroxy-	7 15.		number of helice lecule is	s pr	esent in a collagen
	(D) Decrease seroton			(A)	1	(B)	
706.	Which of the am vasodilator on dec	ino acid produces a carboxylation?	716.	` '	3 ich bond is pr	(D) esei	4 nt in the primary
	(A) Glutamin acid	(B) Histidine			ecture of proteir		,
	(C) Ornithine	(D) Cysteine			Ester		Hydrogen
707.	Neutral amino acid	d is		(C)	lonic bond	(D)	Peptide
	(A) Leucine	(B) Lysine	<i>717</i> .	Sak	caguchi reaction	ı is s	specific for
	(C) Aspartic acid	(D) Histidine			Guanidine group		• .
708.	The amino acid con	taining hydroxy group:			Carboxylic group		
	(A) Glycine (C) Arginine	(B) Isoleucine(D) Thereonine	<i>7</i> 18.		th the exceptior ds found in prot		glycine all amino are
709.	The amino acid whormornes:	hich synthesizes many			Isocitrate dehydro Fumarase	gen	ase
	(A) Valine (C) Alanine	(B) Phenylalanine (D) Histidine			Succinate thioking ATPase	ıse	
710.	Insulin degradati	on of disulfide bond	719		protein structui ated sheets are		he α-helix and β- ımple of
	(A) Pyruvate dehydro(B) Xylitol reductase	-		(A) (C)	•		Secondary structure Quaternary structure
	(C) Gutathione reduc	ctase	720.	An	essential amino	aci	d in man is
<i>7</i> 11.	(D) Xanthine oxidase A protein reacts with	th biuret reagent which			Proline Asparagine		Threonine Tyrosine
	indicates 2 or more (A) Blood clotting		72 1.		amino acid tha	ıt do	oes not form an α-
	(C) Disulphide bonds	s (D) Hydrophobic bonds		(A)	Asparagine	(B)	Tyrosine
712.		the hydrogen bonding		(C)	Tryptophan	(D)	Proline
	which is called as	ır coiled arrangement	722.	The	protein presen	t in	hair is
	(A) β-Helix(C) Both (A) and (B)	(B) α-Helix (D) Spiral		(A) (C)	Elastin Keratin		Prolamine Gliadin

(68) MCQs IN BIOCHEMISTRY

723. Plasma protein can be separated by

- (A) Salting out with $(NH_4)_2SO_4$
- (B) Ultracentrifugation
- (C) Immuno electrophoresis
- (D) All of these

724. RNA does not contain

- (A) Uracil
- (B) Adenine
- (C) Hydroxy methyl cytosine
- (D) Phosphate

725. In mammalian cells, ribosomal RNA is produced mainly in the

- (A) Nucleus
- (B) Nucleolus
- (C) Ribosome
- (D) Golgi apparatus

726. Which co-enzyme is not involved in oxidative decarboxylation of pyruvic acid?

- (A) TPP
- (B) Mg++
- (C) Biotin
- (D) CoA-SH

727. A polymeric unit of starch which has a branched structure is

- (A) Glucose
- (B) Amylopectin
- (C) Isomaltose
- (D) Amylose

728 The repeating unit in hyaluronic acid is

- (A) Glucuronic acid and Galactosamine
- (B) Glucuronic acid are glucosamine
- (C) Glucuronic acid and N-acetyl glucosamine
- (D) Glucuronic acid and N-acetyl galactosamine

729 The repeating disaccharide unit in celluslose is

- (A) Sucrose
- (B) Maltose
- (C) Dextrose
- (D) Cellobiose

_	
_	

ANSWERS					
1. A	2. A	3. A	4. A	5. A	6. A
7. A	8. A	9. A	10. D	11.B	12. A
13. A	14. C	15. C	16. B	1 <i>7</i> . B	18. C
19. B	20. C	21. B	22. A	23. B	24. D
25. A	26. C	27. B	28. B	29. A	30. A
31. C	32. B	33. D	34. B	35. C	36. A
37. B	38. C	39. C	40. B	41.B	42. A
43. B	44. C	45. C	46. A	47. A	48. B
49. D	50. A	51. A	52. A	53. D	54. A
55. B	56. A	57. C	58. B	59. C	60. A
61.B	62. A	63. D	64. C	65. D	66. C
67. A	68. D	69. A	70. A	71. C	72. B
73. A	74. B	75. A	76. A	<i>77</i> . D	78. D
79. A	80. A	81. C	82. A	83. C	84. D
85. C	86. B	87. B	88. A	89. A	90. A
91. A	92. B	93. C	94. D	95. A	96. A
97. A	98. D	99. A	100. A	101. D	102. D
103. D	104. D	105. A	106. A	107. A	108. C
109. D	110. A	111. A	112. A	113. A	114. B
115. D	116. C	117. A	118. A	119. D	120. C
121.B	122. B	123. A	124. A	125. A	126. A
127. B	128. C	129. A	130. A	131.B	132. C
133. A	134. A	135. A	136. A	137. C	138. A
139. A	140. D	141. C	142. A	143. C	144. B
145. A	146. B	1 <i>47</i> . B	148. B	149. D	150. A
151. A	152. B	153. C	154. C	155. B	156. C
157. D	158. D	159. C	160. C	161.B	162. D
163. A	164. D	165. C	166. B	167. D	168. D
169. C	170. C	171. D	172. B	173. A	174. D
175. D	176. C	177. B	178. B	179. A	180. A
181. C	182. C	183. B	184. C	185.B	186. C
187. D	188. A	189. B	190. D	191. C	192. C
193. B	194. C	195. D	196. B	197. D	198. C
199. B	200. B	201. C	202. D	203. C	204. C
205. D 211. C	206. C	207. D	208. B	209. A	210. D
	212. A	213. C	214. A	215. C	216. D
217. B 223. C	218. D 224. C	219. B 225. C	220. B 226. D	221. C 227. C	222. D
223. C 229. C	224. C 230. A	225. C 231. C	226. D 232. D	227. C 233. D	228. D 234. D
229. C 235. C	236. B	237. A	232. D 238. D	239. B	234. D 240. D
233. C 241. B	230. B 242. B	243. C	238. D 244. A	239. B 245. B	240. D 246. A
241. B 247. C	242. B 248. D	249. B	250. C	243. B 251. C	252. A
24/. C	240. D	∠47. D	230. C	231.C	232. A

253. D	254. D	255. D	256. B	257. D	258. B
259. D	260. D	261. D	262. D	263. D	264. B
265. A	266. B	267. B	268. D	269. B	270. D
271. C	272. B	273. C	274. C	275. D	276. B
277. B	278. D	279. C	280. D	281. A	282. D
283.B	284. C	285. A	286. D	287. B	288. B
289. D	290. B	291. D	292. C	293. D	294. D
295.B	296. C	297. B	298. C	299. B	300. C
301. A	302. B	303.B	304. C	305. B	306. B
307. A	308. A	309. C	310. D	311.B	312. D
313. D	314. C	315.B	316. D	317.B	318.B
319. D	320. B	321. A	322. B	323. D	324. A
325. B	326. B	327. A	328. C	329. B	330. D
331. C	332. D	333. C	334. B	335. C	336. B
337. C	338. A	339. A	340. C	341. D	342. B
343. A	344. B	345. C	346. B	347. B	348.B
349. B	350. B	351. C	352. C	353. B	354. C
355. D	356. D	357. C	358. B	359. D	360. D
361.B	362. B	363. D	364. B	365. D	366. D
367. A	368. C	369. A	370. A	371. D	372. B
373.B	374. D	375. A	376. B	377. A	378.B
379. D	380. B	381. D	382. D	383. D	384. D
385. C	386. A	387. A	388. B	389. C	390. D
391. D	392. D	393. D	394. D	395. C	396. B
397. D	398. B	399. B	400. A	401.B	402. A
403.B	404. C	405. D	406. D	407. B	408. B
409. B	410. D	411.B	412. B	413. C	414. C
415. D	416. C	417. B	418. C	419. A	420. D
421. D	422. A	423. C	424. D	425. D	426. C
427. D	428. D	429. A	430. B	431. D	432. A
433. B	434. A	435. A	436. A	437. B	438. B
439. C	440. D	441. C	442. C	443.B	444. D
445. C	446. B	447. D	448. C	449. C	450. C
451. C	452. D	453. A	454. A	455. B	456. C
457. D	458. C	459. A	460. C	461.B	462. A
463. A	464. C	465. C	466. D	467. B	468. A
469. A	470. D	471. C	472. B	473. A	474. B
475. B	476. D	477. C	478. C	479. B	480. D
481. C	482. B	483. C	484. B	485. B	486. C
487. C	488. D	489. B	490. B	491. C	492. C
493.B	494. A	495. B	496. B	497. A	498. C
499. D	500. D	501. C	502. C	503. C	504. C
505. B	506. A	507. D	508. B	509. A	510. C

71

511.B	512. D	513. D	514. A	515. A	516. C
517. A	518. D	519. A	520. D	521. A	522. D
523. C	524. B	525. D	526. A	527. B	528. A
529. A	530. B	531. D	532. D	533. B	534. A
535. B	536. A	537. B	538. D	539. C	540. A
541. C	542. C	543. A	544. D	545. D	546. B
547. D	548. A	549. A	550. B	551. D	552. B
553. A	554. B	555. A	556. C	557.B	558. D
559. A	560. A	561. A	562. A	563. D	564. D
565. C	566. A	567. A	568. A	569. A	570. B
571. A	572. A	573. B	574. C	575. C	576. D
577. D	578. B	579. B	580. A	581.B	582. C
583. C	584. C	585. B	586. D	587. D	588. B
589. A	590. C	591.B	592. A	593. C	594. D
595. B	596. A	597. A	598. C	599. D	600. D
601. C	602. C	603. B	604. B	605. B	606. A
607. A	608. A	609. B	610. A	611. C	612.B
613. D	614. A	615. D	616. A	617. D	618.B
619. D	620. C	621. A	622. B	623. A	624. B
625. D	626. B	627. B	628. B	629. D	630. B
631. D	632. D	633. A	634. A	635. D	636. C
637. A	638. A	639. C	640. B	641.B	642. B
643. D	644. B	645. D	646. D	647. B	648. C
649. A	650.C	651. D	652. A	653.B	654. C
655. D	656. A	657. A	658. B	659. C	660. B
661. A	662. D	663. C	664. D	665. C	666. B
667. B	668. C	669. B	670. C	671. D	672. A
673. C	674. A	675. B	676. C	677. D	678. B
679. C	680. D	681.B	682. B	683. A	684. C
685. A	686. D	687. B	688. B	689. B	690. C
691. D	692. C	693. D	694. C	695. D	696. D
697. A	698. D	699. C	700. A	701.B	702. C
703. C	704. D	705. C	706. B	707. A	708. D
709. B	710. C	711.B	712.B	713. D	714. B
715. C	716. D	717. A	718.B	719.B	720. B
<i>7</i> 21. D	722. C	723. D	724. C	725. B	726. C
727. B	728. C	729. D			

EXPLANATIONS FOR THE ANSWERS

- 12. A Albumin (mol. Wt. 69,000) is the major constituent of plasma proteins with a concentration 3.5–5.0 g/dl. It is exclusively synthesized by the liver. Plasma albumin performs osmotic, transport and nutritive function, besides the buffering action.
- 67. A Ceruloplasmin is a blue coloured, copper containing α²-globulin. Its normal plasma concentration is around 30 mg/dl and it is decreased in Wilson's disease.
- 103. D Defects in clotting factors cause abnormalities in blood clotting. Hemophilia A (defectantihemophilic factor i.e., VII), hemophilia B or Christmas disease (defect-Christmas factor, i.e., IX) are the major abnormalities known.
- 151. A Lysine, arginine, histidine. These are dibasic monocarboxylic acids.
- 212. A The amino acids which are never found in protein structure are collectively referred to as non-protein amino acids. However, the non-protein amino acids perform several biological functions. *e.g.*, ornithine, citrulline, thyroxine.
- 268. D Amino acids are divided into 3 groups based on their metabolic fats.
 - (a) Glycogenic: These amino acids can serve as precursors for the synthesis of glucose (or glycogen) e.g., alanine, aspartate, glycine.
 - (b) Ketogenic: Fat can be synthesized from these amino acids e.g., leucine, lysine.
 - (c) Glycogenic or ketogenic: The amino acids that can form glucose as well as fat e.g., isoleucine, phenylalanine, lysine.
- 300. C Zwitterion (dipolar ion) is a hybrid molecule containing positive and negative ionic groups. Each amino acid has a characteristic pH (e.g., leucine pH 6.0), at which it exists as zwitterions.
- 350. B Albumin/Globulin (A/G) ratio expresses their relation in the serum concentration. The normal A/G ratio is 1.2 to 1.5:1, taking the concentration of albumin and globulins respectively in the range of 3.5-5.0 g/dl and 2.5-3.5 g/dl. The A/G ratio is lowered either due to a decrease in albumin 9liver disease)

- or an increase in globulins (chronic infections).
- 421. D By salting out technique (using ammonium sulfate or sodium sulfate), the plasma proteins can be separated into 3 groups albumin, globulins and fibrinogen. Electrophoresis is the most commonly employed analytical technique for the separation of plasma (serum) proteins. Paper or agar gel electrophoresis with veronal buffer (pH 8.6) separates plasma proteins into 5 distinct bands namely albumin, α_1 α_2 , β -and γ -globulins.
- 488. D Complement system is composed of about 20 plasma proteins that complement the functions of antibodies in defending the body from invading antigens. The complement system helps the body immunity by promoting phagocytosis, formation of antigen-antibody complexes and inflammatory reaction.
- 507. D Apolipoproteins or apoproteins are the (structural) protein components of lipoproteins and are closely involved in the metabolism of the later, e.g., AI, AIII, B₁₀₀, C₁, CII
- 555. A The removal of amino group from the amino acids as ammonia is deamination. It may be oxidative or non-oxidative in nature. The NH₃ so liberated is used for synthesis or urea.
- 600. D The three amino acids glycine, arginine and methionine are required for creatine formation.
 Glycine combines
- 683. A Biuret test is answered by compounds containing two or more CO-NH groups i.e., peptide bonds. All protein and peptides possessing at least two peptide linkages i.e., tripeptide (with 3 amino acids) give positive biuret test. The principle of biuret test is conveniently used to detect the presence of proteins in biological fluids. The mechanism of biuret test is not clearly known. It is believed that the colour is due to the formation of a copper co-ordinated complex.
- 717. A Arginine, containing guanidine group, reacts with α -naphthol and alkaline hypobromite to form a red colour complex.

CHAPTER 4

FATS AND FATTY ACID METABOLISM

8. In humans, a dietary essential fatty acid

(C) Sphingosine with galactose

(D) Sphingosine with phosphoric acid

	(A) Ricinoleic acid (B) Crotonic acid (C) Butyric acid (D) Oleic acid	is (A) Palmitic acid (B) Stearic acid
2.	An example of a saturated fatty acid	is (C) Oleic acid (D) Linoleic acid
	(A) Palmitic acid (B) Oleic acid (C) Linoleic acid (D) Erucic acid	A lipid containing alcoholic amine residue is
3.	If the fatty acid is esterified with alcohol of high molecular weight ins	
	of glycerol, the resulting compound	10. Cephalin consists of
	(A) Lipositol (B) Plasmalogen (C) Wax (D) Cephalin	(A) Glycerol, fatty acids, phosphoric acid and choline
4.	A fatty acid which is not synthesize the body and has to be supplied in	
	diet is	(C) Glycerol, fatty acids, phosphoric acid and inositol
	(A) Palmitic acid (B) Lauric acid (C) Linolenic acid (D) Palmitoleic acid	(D) Glycerol, fatty acids, phosphoric acid and serine
5.	Essential fatty acid:	11. In mammals, the major fat in adipose
	(A) Linoleic acid (B) Linolenic acid	tissues is
	(C) Arachidonic acid (D) All these	(A) Phospholipid (B) Cholesterol
6.	The fatty acid present in cerebroside	(C) Sphingolipids (D) Triacylglycerol
	(A) Lignoceric acid (B) Valeric acid (C) Caprylic acid (D) Behenic acid	12. Glycosphingolipids are a combination of(A) Ceramide with one or more sugar residues
7.	The number of double bonds in ar	

1. An example of a hydroxy fatty acid is

donic acid is

(B) 2

(D) 6

(A) 1

(C) 4

13.		of phospholipids as membrane is because	22.	Gangliosides derived from glucosyl- ceramide contain in addition one or more molecules of
	(A) Fatty acids(B) Both polar and not(C) Glycerol(D) Phosphoric acid	onpolar groups	23.	(A) Sialic acid (B) Glycerol (C) Diacylglycerol (D) Hyaluronic acid 'Drying oil', oxidized spontaneously by atmospheric oxygen at ordinary
14.		unsaponificable matter		temperature and forms a hard water proof material is
	•	(B) Triacylglycerol(D) Cholsesterol		(A) Coconut oil (B) Peanut oil (C) Rape seed oil (D) Linseed oil
15.	Higher alcohol pre (A) Benzyl	(B) Methyl	24.	Deterioration of food (rancidity) is due to presence of (A) Cholesterol
16.	(C) Ethyl Kerasin consists of	(D) Cetyl		(B) Vitamin E (C) Peroxidation of lipids
	(A) Nervonic acid(C) Cervonic acid	(B) Lignoceric acid(D) Clupanodonic acid	25.	(D) Phenolic compounds The number of ml of N/10 KOH required to neutralize the fatty acids in the
1 <i>7</i> .	Gangliosides are golipids found in (A) Liver	complex glycosphin- (B) Brain		distillate from 5 gm of fat is called (A) Reichert-Meissel number
18.	(C) Kidney	(D) Muscle acid found in the cod		(B) Polenske number (C) Acetyl number
10.		ning 5 double bonds is	24	(D) Non volatile fatty acid number
	(A) Clupanodonic ac(B) Cervonic acid(C) Elaidic acid(D) Timnodonic acid	id	26.	Molecular formula of cholesterol is (A) $C_{27}H_{45}OH$ (B) $C_{29}H_{47}OH$ (C) $C_{29}H_{47}OH$ (D) $C_{73}H_{41}OH$
19.	Phospholipid actin	g as surfactant is	27	The cholesterol molecule is
	(A) Cephalin (C) Lecithin	(B) Phosphatidyl inositol(D) Phosphatidyl serine	27.	(A) Benzene derivative (B) Quinoline derivative
20.	An oil which contains cyclic fatty acids and once used in the treatment of leprosy is			(C) Steroid (D) Straight chain acid
	(A) Elaidic oil (C) Lanoline	(B) Rapeseed oil(D) Chaulmoogric oil	28.	Salkowski test is performed to detect (A) Glycerol (B) Cholesterol
21.		rs and taste in a fat delayed or prevented	29.	(C) Fatty acids (D) Vitamin D Palmitic, oleic or stearic acid ester of
	(A) Lead	(B) Copper	•	cholesterol used in manufacture of cosmetic creams is

(A) Elaidic oil

(C) Spermaceti

(B) Lanoline(D) Chaulmoogric oil

(C) Tocopherol

(D) Ergosterol

30. Dietary fats after absorption appear in the circulation as

- (A) HDL
- (B) VLDL
- (C) LDL
- (D) Chylomicron

31. Free fatty acids are transported in the blood

- (A) Combined with albumin
- (B) Combined with fatty acid binding protein
- Combined with β -lipoprotein
- (D) In unbound free salts

32. Long chain fatty acids are first activated to acetyl-CoA in

- (A) Cytosol
- (B) Microsomes
- (C) Nucleus
- (D) Mitochondria

33. The enzyme acyl-CoA synthase catalyses the conversion of a fatty acid of an active fatty acid in the presence of

- (A) AMP
- (B) ADP
- (C) ATP
- (D) GTP

34. Carnitine is synthesized from

- (A) Lysine and methionine
- (B) Glycine and arginine
- (C) Aspartate and glutamate
- (D) Proline and hydroxyproline

35. The enzymes of β -oxidation are found in

- (A) Mitochondria
- (B) Cytosol
- (C) Golgi apparatus (D) Nucleus

36. Long chain fatty acids penetrate the inner mitochondrial membrane

- (A) Freely
- (B) As acyl-CoA derivative
- (C) As carnitine derivative
- (D) Requiring Na dependent carrier

37. An important feature of Zellweger's syndrome is

- (A) Hypoglycemia
- (B) Accumulation of phytanic acid in tissues
- (C) Skin eruptions
- (D) Accumulation of C₂₆-C₃₈ polyenoic acid in

38. An important finding of Fabry's disease

- (A) Skin rash
- (B) Exophthalmos
- Hemolytic anemia (D) Mental retardation

39. Gaucher's disease is due to deficiency of the enzyme:

- (A) Sphingomyelinase
- (B) Glucocerebrosidase
- (C) Galactocerbrosidase
- (D) β-Galactosidase

40. Characteristic finding in Gaucher's disease is

- (A) Night blindness
- (B) Renal failure
- (C) Hepatosplenomegaly
- Deafness

41. An important finding in Neimann-Pick disease is

- (A) Leukopenia
- Cardiac enlargement
- Corneal opacity
- (D) Hepatosplenomegaly

42. Fucosidosis is characterized by

- (A) Muscle spasticity (B) Liver enlargement
- (C) Skin rash
- (D) Kidney failure

43. Metachromatic leukodystrophy is due to deficiency of enzyme:

- (A) α-Fucosidase
- (B) Arylsulphatase A
- (C) Ceramidase
- (D) Hexosaminidase A

44. A significant feature of Tangier disease is

- (A) Impairment of chylomicron formation
- (B) Hypotriacylglycerolmia
- (C) Absence of Apo-C-II
- (D) Absence of Apo-C-I

45. A significant feature of Broad Beta disease

- (A) Hypocholesterolemia
- Hypotriacylglycerolemia
- Absence of Apo-D
- Abnormality of Apo-E

46. Neonatal tyrosinemia improves on administration of

- (A) Thiamin
- (B) Riboflavin
- (C) Pyridoxine
- (D) Ascorbic acid

47. Absence of phenylalanine hydroxylase causes

- (A) Neonatal tyrosinemia
- (B) Phenylketonuria
- (C) Primary hyperoxaluria
- (D) Albinism

48. Richner-Hanhart syndrome is due to defect in

- (A) Tyrosinase
- (B) Phenylalanine hydroxylase
- (C) Hepatic tyrosine transaminase
- (D) Fumarylacetoacetate hydrolase

49. Plasma tyrosine level in Richner-Hanhart syndrome is

- (A) 1-2 mg/dL
- (B) 2-3 mg/dL
- (C) 4-5 mg/dL
- (D) $8-10 \, \text{mg/dL}$

50. Amount of phenylacetic acid excreted in the urine in phenylketonuria is

- (A) 100-200 mg/dL (B) 200-280 mg/dL
- (C) 290-550 mg/dL (D) 600-750 mg/dL

51. Tyrosinosis is due to defect in the enzyme:

- (A) Fumarylacetoacetate hydrolase
- (B) p-Hydroxyphenylpyruvate hydroxylase
- (C) Tyrosine transaminase
- (D) Tyrosine hydroxylase

52. An important finding in Histidinemia is

- (A) Impairment of conversion of α -Glutamate to α -ketoglutarate
- (B) Speech defect
- (C) Decreased urinary histidine level
- (D) Patients can not be treated by diet

53. An important finding in glycinuria is

- (A) Excess excretion of oxalate in the urine
- (B) Deficiency of enzyme glycinase
- (C) Significantly increased serum glycine level
- (D) Defect in renal tubular reabsorption of glycine

54. Increased urinary indole acetic acid is diagnostic of

- (A) Maple syrup urine disease
- (B) Hartnup disease
- (C) Homocystinuia
- (D) Phenylketonuria

55. In glycinuria daily urinary excretion of glycine ranges from

- (A) 100-200 mg
- (B) 300-500 mg
- (C) 600-1000 mg
- (D) 1100-1400 mg

56. An inborn error, maple syrup urine disease is due to deficiency of the enzyme:

- (A) Isovaleryl-CoAhydrogenase
- (B) Phenylalnine hydroxylase
- (C) Adenosyl transferase
- (D) α-Ketoacid decarboxylase

Maple syrup urine disease becomes evident in extra uterine life by the end of

- (A) First week
- (B) Second week
- (C) Third week
- (D) Fourth week

58. Alkaptonuria occurs due to deficiency of the enzyme:

- (A) Maleylacetoacetate isomerase
- (B) Homogentisate oxidase
- (C) p-Hydroxyphenylpyruvate hydroxylase
- (D) Fumarylacetoacetate hydrolase

59. An important feature of maple syrup urine disease is

- (A) Patient can not be treated by dietary regulation
- (B) Without treatment death, of patient may occur by the end of second year of life
- (C) Blood levels of leucine, isoleucine and serine are increased
- (D) Excessive brain damage

60. Ochronosis is an important finding of

- (A) Tyrosinemia
- (B) Tyrosinosis
- (C) Alkaptonuria
- (D) Richner Hanhart syndrome

61. Phrynoderma is a deficiency of (A) Essential fatty acids (B) Proteins (C) Amino acids (D) None of these 62. The percentage of linoleic acid in safflower oil is (A) 73 (B) 57 (C) 40 (D) 15 63. The percentage of polyunsaturated fatty

acids in soyabean oil is (A) 62 (B) 10

- (C) 3 (D) 2

 64. The percentage of polyunsaturated fatty acids in butter is
 - (A) 60 (B) 37 (C) 25 (D) 3

65. Dietary fibre denotes

- (A) Undigested proteins
- (B) Plant cell components that cannot be digested by own enzymes
- (C) All plant cell wall components
- (D) All non digestible water insoluble polysaccharide

A high fibre diet is associated with reduced incidence of

- (A) Cardiovascular disease
- (B) C.N.S. disease
- (C) Liver disease
- (D) Skin disease

67. Dietary fibres are rich in

(A) Cellulose (B) Glycogen (C) Starch (D) Proteoglycans

68. Minimum dietary fibre is found in

- (A) Dried apricot
- (B) Peas
- (C) Bran (D) Cornflakes

69. A bland diet is recommended in

- (A) Peptic ulcer (B) Atherosclerosis (C) Diabetes (D) Liver disease
- 70. A dietary deficiency in both the quantity
 - and the quality of protein results in
 - (A) Kwashiorkar (B) Marasmus
 (C) Xerophtalmia (D) Liver diseases

71. The deficiency of both energy and protein causes

- (A) Marasmus
- (B) Kwashiorkar
- (C) Diabetes
- (D) Beri-beri

72. Kwashiorkar is characterized by

- (A) Night blindness (B)
- (B) Edema
- (C) Easy fracturability (D) Xerophthalmia

73. A characteristic feature of Kwashiorkar is

- (A) Fatty liver
- (B) Emaciation
- (C) Low insulin lever
- (D) Occurrence in less than 1 year infant

74. A characteristic feature of marasmus is

- (A) Severe hypoalbuminemia
- (B) Normal epinephrine level
- (C) Mild muscle wasting
- (D) Low insulin and high cortisol level

75. Obesity generally reflects excess intake of energy and is often associated with the development of

- (A) Nervousness
- (B) Non-insulin dependent diabetes mellitus
- (C) Hepatitis
- (D) Colon cancer

76. Atherosclerosis and coronary heart diseases are associated with the diet:

- (A) High in total fat and saturated fat
- (B) Low in protein
- (C) High in protein
- (D) High in carbohydrate

Cerebrovasular disease and hypertension is associated with

- (A) High calcium intake
- (B) High salt intake
- (C) Low calcium intake
- (D) Low salt intake

78. The normal range of total serum bilirubin is

- (A) 0.2-1.2 mg/100 ml
- (B) 1.5-1.8 mg/100 ml
- (C) $2.0-4.0 \,\text{mg}/100 \,\text{ml}$
- (D) Above 7.0 mg/100 ml

79. The normal range of direct reacting (conjugated) serum bilirubin is

- (A) 0-0.1 mg/100 ml
- (B) 0.1-0.4 mg/100 ml
- (C) 0.4-06 mg/100 ml
- (D) $0.5-1 \, \text{mg}/100 \, \text{ml}$

80. The normal range of indirect (unconjugated) bilirubin in serum is

- (A) 0-0.1 mg/100 ml
- (B) 0.1-0.2 mg/100 ml
- (C) 0.2-0.7 mg/100 ml
- (D) 0.8-1.0 mg/100 ml

81. Jaundice is visible when serum bilirubin exceeds

- (A) 0.5 mg/100 ml
- (B) 0.8 mg/100 ml
- (C) 1 mg/100 ml
- (D) 2.4 mg/100 ml

82. An increase in serum unconjugated bilirubin occurs in

- (A) Hemolytic jaundice
- (B) Obstructive jaundice
- (C) Nephritis
- (D) Glomerulonephritis

83. One of the causes of hemolytic jaundice is

- (A) G-6 phosphatase deficiency
- (B) Increased conjugated bilirubin
- (C) Glucokinase deficiency
- (D) Phosphoglucomutase deficiency

84. Increased urobilinogen in urine and absence of bilirubin in the urine suggests

- (A) Obstructive jaundice
- (B) Hemolytic jaundice
- (C) Viral hepatitis
- (D) Toxic jaundice

85. A jaundice in which serum alanine transaminase and alkaline phosphatase are normal is

- (A) Hepatic jaundice
- (B) Hemolytic jaundice
- (C) Parenchymatous jaundice
- (D) Obstructive Jaundice

86. Fecal stercobilinogen is increased in

- (A) Hemolytic jaundice
- (B) Hepatic jaundice
- (C) Viral hepatitis
- (D) Obstructive jaundice

87. Fecal urobilinogen is increased in

- (A) Hemolytic jaundice
- (B) Obstruction of biliary duct
- (C) Extrahepatic gall stones
- (D) Enlarged lymphnodes

88. A mixture of conjugated and unconjugated bilirubin is found in the circulation in

- (A) Hemolytic jaundice
- (B) Hepatic jaundice
- (C) Obstructive jaundice
- (D) Post hepatic jaundice

89. Hepatocellular jaundice as compared to pure obstructive type of jaundice is characterized by

- (A) Increased serum alkaline phosphate, LDH and AIT
- (B) Decreased serum alkaline phosphatase, LDH and AIT
- (C) Increased serum alkaline phosphatase and decreased levels of LDH and ALT
- (D) Decreased serum alkaline phosphatase and increased serum LDH and ALT

90. Icteric index of an normal adult varies between

- (A) 1-2
- (B) 2-4
- (C) 4-6
- (D) 10-15

91. Clinical jaundice is present with an icteric index above

- (A) 4
- (B) 8
- (C) 10
- (D) 15

92. Normal quantity of urobilinogen excreted in the feces per day is about

- (A) 10-25 mg
- (B) 50-250 mg
- (C) 300-500 mg
- (D) 700-800 mg

93. Fecal urobilinogen is decreased in

- (A) Obstruction of biliary duct
- (B) Hemolytic jaundice
- (C) Excess fat intake
- (D) Low fat intake

94. A complete absence of fecal urobilinogen is strongly suggestive of

- (A) Obstruction of bile duct
- (B) Hemolytic jaundice
- (C) Intrahepatic cholestasis
- (D) Malignant obstructive disease

95. Immediate direct Vanden Bergh reaction indicates

- (A) Hemolytic jaundice
- (B) Hepatic jaundice
- (C) Obstructive jaundice
- (D) Megalobastic anemia

96. The presence of bilirubin in the urine without urobilinogen suggests

- (A) Obstructive jaundice
- (B) Hemolytic jaundice
- (C) Pernicious anemia
- (D) Damage to the hepatic parenchyma

97. Impaired galactose tolerance test suggests

- (A) Defect in glucose utilisation
- (B) Liver cell injury
- (C) Renal defect
- (D) Muscle injury

98. Increased serum ornithine carabamoyl transferase activity is diagnostic of

- (A) Myocardial infarction
- (B) Hemolytic jaundice
- (C) Bone disease
- (D) Acute viral hepatitis

The best known and most frequently used test of the detoxicating functions of liver is

- (A) Hippuric acid test
- (B) Galactose tolerance test
- (C) Epinephrine tolerance test
- (D) Rose Bengal dye test

100. The ability of liver to remove a dye like BSP from the blood suggests a normal

- (A) Excretory function
- (B) Detoxification function
- (C) Metabolic function
- (D) Circulatory function

101. Removal of BSP dye by the liver involves conjugation with

- (A) Thiosulphate
- (B) Glutamine
- (C) Cystein component of glutathione
- (D) UDP glucuronate

102. Normal value of plasma total proteins varies between

- (A) 3-4 gm/100ml (B) 6-8 gm/100ml
- (C) 10-12 gm/100ml (D) 14-16 gm/100ml

103. A decrease in albumin with increased production of other unidentified proteins which migrate in β , γ region suggests

- (A) Cirrhosis of liver
- (B) Nephrotic syndrome
- (C) Infection
- (D) Chronic lymphatic leukemia

104. In increase in α_2 -Globulin with loss of albumin in urine suggests

- (A) Primary immune deficiency
- (B) Nephrotic syndrome
- (C) Cirrhosis of liver
- (D) Multiple myeloma

The normal levels of prothrombin time is about

- (A) 2 sec
- (B) 4 sec
- (C) 14 sec
- (D) 10-16 sec

106. In obstructive jaundice prothrombin time

- (A) Remains normal
- (B) Decreases
- (C) Responds to vit K and becomes normal
- (D) Responds to vit K and increases

107. In parenhymatous liver disease the prothrombin time

- (A) Remains normal
- (B) Increases
- (C) Decreases
- (D) Responds to Vit K

108. Urea clearance test is used to determine

- (A) Glomerular filtration rate
- Renal plasma flow
- Ability of kidney to concentrate the urine
- Measurement of tubular mass

109. The formula to calculate maximum urea clearance is $\frac{\mathbf{U} \times \mathbf{V}}{\mathbf{B}}$, where \mathbf{U} denotes

- (A) Concentration of urea in urine in gm/24 hr
- (B) Concentration of urea in urine in mg/100 ml
- (C) Concentration of urea in blood in mg/100 ml
- (D) Volume of urine in ml/mt

110. Average maximum urea clearance is

- (A) 30 ml
- (B) 50 ml
- (C) 75 ml
- (D) 90 ml

111. The average normal value for standard urea clearance is

- (A) 20 ml
- (B) 30 ml
- (C) 40 ml
- (D) 54 ml

112. Urea clearance is lowered in

- (A) Acute nephritis
- Pneumonia
- Early stage of nephritic syndrome
- Benign hypertension

113. Glomerular filtration rate can be measured

- (A) Endogenous creatinine clearance
- (B) Para-aminohippurate test
- (C) Addis test
- (D) Mosenthal test

114. At normal levels of creatinine in the blood, this metabolite is

- (A) Filtered at the glomerulus but not secreted nor reabsorbed by the tubule
- Secreted by the tubule
- Reabsorbed by the tubule
- (D) Secreted and reabsorbed by tubule

115. The normal values for creatinine clearance varies from

- (A) 20-40 ml/min
- (B) 40-60 ml/min
- (C) 70-85 ml/min
- (D) 95-105 ml/min

116. Measurement of insulin clearance test is a measure of

- Glomerular filtration rate
- Filtration factor (B)
- Renal plasma flow
- Tubular secretory mass

117. The polysaccharide insulin is

- (A) Filtered at the glomerulus but neither secreted nor reabsorbed by the tubule
- Filtered at the glomerulus and secreted by the tubule
- (C) Filtered at the glomerulus and reabsorbed by the tubule
- (D) Filtered at the glomerulus, secreted and reabsorbed by the tubule

118. Normal insulin clearance is

- (A) 40 ml/1.73 sgm (B) 60 ml/1.73 sgm
- (C) 80 ml/1.73 sqm (D) 120 ml/1.73 sqm

119. Creatinine EDTA clearance is a test to measure

- (A) Renal plasma flow
- (B) Filtration fraction
- Glomerular filtration rate
- (D) Tubular function

120. The end products of saponification:

- (A) glycerol
- (B) acid
- (C) soap
- (D) Both (A) and (C)

121. The normal PAH clearance for a surface area of 1.73 sqm. is

- (A) 200 ml/min
- (B) 300 ml/min
- (C) 400 ml/min
- (D) 574 ml/min

122. Para amino hippurate is

- (A) Filtered at glomeruli and secreted by the
- Filtered at glomeruli and not secreted by the tubules
- (C) Filtered at glomeruli and reabsorbed completely
- (D) Not removed completely during a single circulation of the blood through the kidney.

123. The Tm for PAH i.e the maximal secretory capacity of the tubule for PAH can be used to gavge the

(A) Extent of tubular damage

124.

125.

126.

127.

128.

129.

130.

131.

(B)		capacity of the tubule to	132.	Trig	lycerides are		
(C)	perform osmotic work Impairment of renal plasma flow				Heavier than wat		
(C) (D)	Glomerular filtrati	•		(B)	Major constituent	s of n	nembranes
		ng/min/1.73 sqm for		(C) (D)	Non-polar Hydrophilic		
PAF			133.	Cer	ebronic acid is _l	ores	ent in
(A)	20	(B) 40		(A)			
(C)	60	(D) 80		(B)	Sphingophosphol	•	
		f filtration factor in an		(C)	Galactosyl ceram	•	
	olt is			(D)	Gangliosides		
	0.10-0.15	(B) 0.16–0.21	134.	Асу	dsphingosine is	also	known as
(C)	0.25–0.30	(D) 0.35–0.40		(A)			Ceramide
		tends to be normal in		(C)	Cerebroside	(D)	Sulphatide
	Early essential hyp		135.	The	highest phos	pho	olipids content is
(B) (C)	Malignant phase Glomerulonephriti				nd in	•	•
(C) (D)	Acute nephritis	3		(A)	Chylomicrons	(B)	VLDL
	filtration factor	.:. :		(C)	LDL	(D)	HDL
			136.	The major lipid in chylomicrons is			
(A) (B)	Glomerulonephriti Malignant phase			(A)	Triglycerides	(B)	Phospholipids
(C)	Early essential hyp			(C)	Cholesterol	(D)	Free fatty acids
(D)	Acute nephritis		137.	Nu	mber of carbon	ator	ms in cholesterol is
The	filtration factor	is decreased in		(A)	17	(B)	19
(A)	Glomerulonephriti	S		(C)	27	(D)	30
(B)	Early essential hyp		138.	The	lipoprotein rich	nest	in cholesterol is
(C)	Malignant phase	of hypertension		(A)	Chylomicrons	(B)	VLDL
(D)	Starvation			(C)	LDL	(D)	HDL
		sulphanpthalein (PSP)	139.	The	major storage	forn	n of lipids is
refl				(A)	Esterified choleste	rol	
(A) (B)	Glomerulonephriti Maximaltabular e			(B)	Glycerophospholi	pids	
(C)	Filtration factor	xcreiory capacity		(C)	Triglycerides		
	Renal plasma flov	٧		(D)	Sphingolipids		
Wh	ich of the folloy	ving is a polyunsatu-	140.	Cer	ebonic acid is p	rese	ent in
	ed fatty acid?	g io a poi/elleaie		(A)	Triglycerides		
(A)	Palmitic acid	(B) Palmitoleic acid		(B) (C)	Cerebrosides Esterified cholestro	اہ	
(C)	Linoleic acid	(D) Oleic acid		(C) (D)	Sphingomyelin	JI	
		ng is omega-3 polyun-	141		nitrogenous bo	160	in lecithin is
	rated fatty acid		1-71.		Ethanolamine		Choline
	Linoleic acid	(B) α-Linolenic acid		(A) (C)	Serine		Betaine
(C)	γ-Linolenic acid	(D) Arachidonic acid		101		1-1	

142.	All exc		e or	mega-6-fatty acids	152.		hovo synthesis Cytosol		atty acids occurs in Mitochondria
		Linoleic acid γ-Linolenic acid		α-Linolenic acid Arachidonic acid			Microsomes	, ,	All of these
143.		·			153.	Acy	/l Carrier Proteiı	ı co	ntains the vitamin:
143.	exc	ept		18 carbon atoms			Biotin Pantothenic acid		Lipoic acid Folic acid
	(C)	Linoleic acid Arachidonic acid	(D)		154.		nich of the follo		g is required as a
144.	A 2 ing		cid	among the follow-			NADH		NADPH
	(A)	Linoleic acid β-Linolenic acid		α-Linolenic acid	155	(C)	FADH ₂	(D)	FMNH ₂
145		•			133.		patic liponenesi		-
145.	ext	rahepatic tissue	s by				cAMP Epinephrine		Glucagon Insulin
		Chylomicrons HDL	٠,	VLDL LDL	156.		novo synthesis of the following		atty acids requires cept
146.				rted from liver to		(A)	Biotin	(B)	NADH
		rahepatic tissue		y VLDL		(C)	Panthothenic acid	(D)	ATP
		Chylomicrons HDL		LDL	15 7 .		-	-	se regulates fatty h of the following
147.				of the following			chanism?		· ·
	•	jects against atl				(A)	Allosteric regulation	on	
		Chylomicrons HDL		VLDL LDL		. ,	Covalent modifica		
1/10							Induction and rep	ressi	on
140.		ential except		no acids are non-		` '	All of these		
	(A)	Alanine Cysteine		Histidine Proline	158.	foll	owing coenzym	es e	
149.		phydryl group i					CoA	٠,	FAD
		Cysteine	-	Methionine		` '	NAD	` '	NADP
	(C)	Both (A) and (B)	(D)	None of these	159.		ich of the follo β-oxidation pat		g can be oxidized ay?
150.		gosaccharide-py equired for the s		hosphoryl dolichol thesis of			Saturated fatty ac		
	(A)	N-linked glycopro	-				Monosaturated fo		
	(B)	O-linked glycopro				(C)	Polyunsaturated f	atty (acids
	(C)	GPI-linked glycopi	otei	ns		(D)			
	(D)	All of these			160.		-		ed on oxidation of
151.				ns, oligosaccharide		(A)	Monounsaturated		
		ttached to prote		•		(B)	Polyunsaturated f	•	acids umber of carbon atoms
	(A)			Glutamine residue		(C) (D)	None of these	aa nt	imber of carbon atoms
	(C)	Arginine residue	(U)	Lysine residue		101	1 10110 01 111030		

161. An enzyme required for the synthesis of ketone bodies as well as cholesterol is

- (A) Acetyl CoA carboxylase
- (B) HMG CoA synthetase
- (C) HMG CoA reductase
- (D) HMG CoA lyase

162. Ketone bodies are synthesized in

- (A) Adipose tissue
- (B) Liver
- (C) Muscles
- (D) Brain

163. All the following statements about ketone bodies are true except

- (A) Their synthesis increases in diabetes mellitus
- (B) They are synthesized in mitchondria
- (C) They can deplete the alkali reserve
- (D) They can be oxidized in the liver

164. All the following statements about carnitine are true except

- (A) It can be synthesised in the human body
- (B) It can be synthesized from methionine and lysine
- (C) It is required for transport of short chain fatty acids into mitochondria
- (D) Its deficiency can occur due to haemodialysis

165. Which of the following can be synthesized in the human body if precurors are available?

- (A) Oleic acid
- (B) Palmitoleic acid
- (C) Arachidonic acid (D) All of these

166. All the following can be oxidized by βoxidation except

- (A) Palmitic acid
- (B) Phytanic acid
- (C) Linoleic acid
- (D) Fatty acids having an odd number of carbon atoms

167. Anti-inflammatory corticosteroids inhibit the synthesis of

- (A) Leukotrienes
- (B) Prostaglandins
- (C) Thromboxanes
- (D) All of these

168. Diets having a high ratio of polyunsaturated: saturated fatty acids can cause

- (A) Increase in serum triglycerides
- (B) Decrease in serum cholesterol
- (C) Decrease in serum HDL
- (D) Skin lesions

169. Thromboxanes cause

- (A) Vasodilation
- (B) Bronchoconstriction
- (C) Platelet aggregation
- (D) All of these

170. Prostaglandins lower camp in

- (A) Adipose tissue
- (B) Lungs
- (C) Platelets
- (D) Adenohypophysis

171. Slow reacting Substance of Anaphylaxis is a mixture of

- (A) Prostaglandins
- (B) Prostacyclins
- (C) Thromboxanes
- (D) Leukotrienes

172. Dipalmitoyl lecithin acts as

- (A) Platelet activating factor
- (B) Second messenger for hormones
- (C) Lung surfactant
- (D) Anti-ketogenic compound

173. Reichert-Meissl number:

- (A) 0.1 N KOH
- (B) 0.5 KOH
- (C) 0.1 N NaOH
- (D) 0.5 NaOH

174. In glycerophospholipids, a polyunsaturated fatty acid is commonly attached to which of the following carbon atom of glycerol?

- (A) Carbon 1
- (B) Carbon 2
- (C) Both (A) and (B)
- (D) None of these

175. Lysolecithin is formed from lecithin by removal of

- (A) Fatty acid from position 1
- (B) Fatty acid from position 2
- (C) Phosphorylcholine
- (D) Choline

176. Sphingosine is synthesized from

- (A) Palmitoyl CoA and Choline
- (B) Palmitoyl CoA and ethanolamine
- (C) Palmitoyl CoA and serine
- (D) Acetyl CoA and choline

177. For synthesis of sphingosine, all the following coenzymes are required except

- (A) Pyridoxal phosphate
- (B) NADPH
- (C) FAD
- (D) NAD

178. Cerebrosides contain all the following 188. Activated lecithin cholesterol acyl transexcept ferase is essential for the conversion of (A) Galactose (B) Sulphate (A) VLDL remnants into LDL (C) Sphingosine (D) Fatty acid Nascent HDL into HDL (C) HDL₂ into HDL₃ 179. Niemann-Pick disease results from (D) HDL₃ into HDL₂ deficiency of (A) Ceramidase (B) Sphingomyelinase 189. Fatty liver may be caused by (C) Arylsulphatase A (D) Hexosaminidase A (A) Deficiency of methionine Puromycin 180. Chylomicron remnants are catabolised in (C) Chronic alcoholism (A) Intestine (B) Adipose tissue (D) All of these (C) Liver (D) Liver and intestine 190. Alcohol dehydrogenase converts ethanol 181. VLDL remnant may be converted into into (A) VLDL (B) LDL (A) Acetyl CoA (B) Acetaldehyde (C) HDL (D) Chylomicrons (D) CO₂ and H₂O (C) Acetate 182. Receptors for chylomicron remnants are 191. Lipids are stored in the body mainly in (A) Apo A specific (B) Apo B-48 specific the form of (C) Apo C specific (D) Apo E specific (A) Phospholipids (B) Glycolipids 183. LDL receptor is specific for (C) Triglycerides (D) Fatty acids (A) Apo B-48 and Apo B 100 192. Lipid stores are mainly present in (B) Apo B-48 and Apo E (A) Liver (B) Brain (C) Apo B-100 and Apo D (C) Muscles (D) Adipose tissue (D) Apo B-100 and apo D 193. Glycerol is converted into glycerol-3-184. Nascent HDL of intestinal origin lacks phosphate by (A) Apo A (B) Apo C (A) Thiokinase (B) Triokinase (C) Apo E (D) Apo C and Apo E (C) Glycerol kinase (D) All of these 185. HDL is synthesized in 194. In adipose tissue, glycerol-3-phosphate required for the synthesis of triglycerides (A) Adipose tissue (B) Liver comes mainly from (D) Liver and intestine (C) Intestine (A) Hydrolysis of pre-existing triglycerides 186. Nascent HDL of intestinal origin acquires (B) Hydrolysis of phospholipids Apo C and Apo E from (C) Dihydroxyacetone phosphate formed in (A) Chylomicrons glycolysis (B) VLDL (D) Free glycerol (C) LDL 195. Glycerol released from adipose tissue by (D) HDL of the hepatic origin hydrolysis of triglycerides is mainly 187. Heparin releasable hepatic lipase converts (A) Taken up by liver (A) VLDL remnants into LDL (B) Taken up by extrahepatic tissues (B) Nascent HDL into HDL (C) Reutilised in adipose tissue (C) HDL₂ into HDL₃ (D) Excreted from the body

(D) HDL₃ into HDL₂

(D) 3-Monoacylglycerol

196. Free glycerol cannot be used for triglyceride 204. Oxidation of fatty acids occurs synthesis in (A) In the cytosol (A) Liver (B) Kidney (B) In the matrix of mitochondria (C) Intestine (D) Adipose tissue On inner mitochondrial membrane On the microsomes 197. Adipose tissue lacks 205. Activation of fatty acids requires all the (A) Hormone-sensitive lipase following except (B) Glycerol kinase (A) ATP (B) Coenzyme A (C) cAMP-dependent protein kinase Thiokinase (D) Carnitine (C) (D) Glycerol-3-phosphate dehydrogenase 206. Mitochondrial thiokinase acts on 198. A digestive secretion that does not contain any digestive enzyme is (A) Short chain of fatty acids (B) Medium chain fatty acids (A) Saliva (B) Gastric juice (C) Long chain fatty acids (C) Pancreatic juice (D) Bile (D) All of these 199. Saliva contains a lipase which acts on triglycerides having 207. Carnitine is required for the transport of (A) Short chain fatty acids (A) Triglycerides out of liver (B) Triglycerides into mitochondria (B) Medium chain fatty acids Short chain fatty acids into mitochondria (C) Long chain fatty acids (D) Long chain fatty acids into mitochondria (D) All of these 208. Carnitine acylcarnitine translocase is 200. Salivary lipase hydrolyses the ester bond present (A) In the inner mitochondrial membrane (A) Position 1 of triglycerides In the mitochondrial matrix (B) Position 2 of triglycerides On the outer surface of inner mitochondrial (C) Position 3 of triglycerides membrane (D) All of these On the inner surface of inner mitochondrial 201. Salivary lipase converts dietary triglymembrane cerides into 209. Net ATP generation on complete oxidation (A) Diglycerides and fatty acids of stearic acid is (B) Monoglycerides and fatty acids (A) 129 (B) 131 (C) Glycerol and fatty acids (D) 148 (C) 146 (D) All of these 210. Propionyl CoA formed oxidation of fatty 202. Pancreatic lipase requires for its activity: acids having an odd number of carbon atoms is converted into (A) Co-lipase (B) Bile salts (C) Phospholipids (D) All of these (A) Acetyl CoA (B) Acetoacetyl CoA 203. Pancreatic lipase converts triacylglycerols (C) D-Methylmalonyl CoA (D) Butyryl CoA (A) 2, 3-Diacylglycerol (B) 1-Monoacylglycerol 211. α -Oxidation of fatty acids occurs mainly in (C) 2-Monoacylglycerol (A) Liver (B) Brain

(C) Muscles

(D) Adipose tissue

212. Refsum's disease results from a defect in the following pathway except

- (A) Alpha-oxidation of fatty acids
- Beta-oxidation of fatty acids
- (C) Gamma-oxidation of fatty acids
- (D) Omega-oxidation of fatty acids

213. The end product of omega-oxidation of fatty acids having an even number of carbon atoms is

- (A) Adipic acid
- (B) Suberic acid
- (C) Both (A) and (B) (D) None of these

214. De novo synthesis of fatty acids is catalysed by a multi-enzyme complex which contains

- (A) One-SH group
- (B) Two-SH groups
- (C) Three-SH groups (D) Four-SH groups

215. Fat depots are located in

- (A) Intermuscular connective tissue
- (B) Mesentary
- (C) Omentum
- (D) All of these

216. Salivary lipase is secreted by

- (A) Parotid glands
- (B) Sub-maxillary glands
- (C) Dorsal surface of tongue
- (D) None of these

217. Co-lipase is a

- (A) Bile salt
- (B) Vitamin
- (C) Protein
- (D) Phospholipid

218. Plasma becomes milky

- (A) Due to high level of HDL
- Due to high level of LDL
- During fasting
- (D) After a meal

219. Mitochondrial membrane is permeable to

- (A) Short chain fatty acids
- (B) Medium chain fatty acids
- (C) Long chain fatty acids
- (D) All of these

220. During each cycle of β -oxidation

- (A) One carbon atom is removed from the carboxyl end of the fatty acid
- One carbon atom is removed from the methyl end of the fatty acid
- (C) Two carbon atoms are removed from the carboxyl end of the fatty acid
- Two carbon atoms are removed from the methyl end of the fatty acid

221. Net generation of energy on complete oxidation of palmitic acid is

- 129 ATP equivalents
- 131 ATP equivalents
- 146 ATP equivalents (C)
- 148 ATP equivalents

222. Net generation of energy on complete oxidation of a 17-carbon fatty acid is

- (A) Equal to the energy generation from a 16-carbon fatty acid
- Equal to the energy generation from an 18-carbon fatty acid
- (C) Less than the energy generation from a 16-carbon fatty acid
- (D) In between the energy generation from a 16-carbon fatty acid and an 18-carbon fatty acid

223. Net energy generation on complete oxidation of linoleic acid is

- (A) 148 ATP equivalents
- (B) 146 ATP equivalents
- (C) 144 ATP equivalents
- (D) 142 ATP equivalents

224. Extramitochondrial synthesis of fatty acids occurs in

- (A) Mammary glands (B) Lungs
- (C) Brain (D) All of these

225. One functional sub-unit of multi-enzyme complex for de novo synthesis of fatty acids contains

- (A) One —SH group
- (B) Two—SH groups
- (C) Three —SH groups
- (D) Four —SH groups

226. NADPH required for fatty acid synthesis can come from

- (A) Hexose monophosphate shunt
- (B) Oxidative decarboxylation of malate
- (C) Extramitochondrial oxidation of isocitrate
- (D) All of these

227. Fatty liver may be prevented by all of the following except

- (A) Choline
- (B) Betaine
- (C) Methionine
- (D) Ethionine

228. Human desaturase enzyme system cannot introduce a double bond in a fatty acid beyond

- (A) Carbon 9
- (B) Carbon 6
- (C) Carbon 5
- (D) Carbon 3

229. Which of the following lipid is absorbed actively from intestines?

- (A) Glycerol
- (B) Cholesterol
- (C) Monoacylglycerol
- (D) None of these

230. C₂₂ and C₂₄, fatty acids required for the synthesis of sphingolipids in brain are formed by

- (A) De novo synthesis
- (B) Microsomal chain elongation
- (C) Mitochondrial chain elongation
- (D) All of these

231. Sphingomyelins:

- (A) Phospholipids
- (B) Nitrolipids
- (C) Alcohols
- (D) None of these

232. All of the following statements about hypoglycin are true except

- (A) It is a plant toxin
- (B) It causes hypoglycaemia
- (C) It inhibits oxidation of short chain fatty acids
- (D) It inhibits oxidation of long chain fatty acids

233. Synthesis of prostaglandins is inhibited by

- (A) Glucocorticoids
- (B) Aspirin
- (C) Indomethacin
- (D) All of these

Lipo-oxygenase is required for the synthesis of

- (A) Prostaglandins
- (B) Leukotrienes
- (C) Thromboxanes
- (D) All of these

235. All of the following statements about multiple sclerosis are true except

- (A) There is loss of phospholipids from white matter
- (B) There is loss of sphingolipids from white matter
- (C) There is loss of esterified cholesterol from white matter
- (D) White matter resembles gray matter in composition

236. After entering cytosol, free fatty acids are bound to

- (A) Albumin
- (B) Globulin
- (C) Z-protein
- (D) None of these

237. Release of free fatty acids from adipose tissue is increased by all of the following except

- (A) Glucagon
- (B) Epinephrine
- (C) Growth hormone (D) Insulin

238. All the following statements about brown adipose tissue are true except

- (A) It is rich in cytochromes
- (B) It oxidizes glucose and fatty acids
- (C) Oxidation and phosphorylation are tightly coupled in it
- (D) Dinitrophenol has no effect on it

239. Lovastatin and mevastatin lower

- (A) Serum triglycerides
- (B) Serum cholesterol
- (C) Serum phospholipids
- (D) All of these

240. Lovastatin is a

- (A) Competitive inhibitor of acetyl CoA carboxylase
- (B) Competitive inhibitor of HMG CoA synthetase
- (C) Non-competitive inhibitor of HMG CoA reductase
- (D) Competitive inhibitor of HMG CoA reductase

Abetalipoproteinaemia occurs due to a block in the synthesis of

- (A) Apoprotein A
- (B) Apoprotein B
- (C) Apoprotein C
- (D) Cholesterol

$\overline{}$			
242.	All of the following statements abo Tangier disease are true except (A) It is a disorder of HDL metabolism	ut	(B) Saturated fatty acids (C) Integral proteins (D) Cholesterol
	 (B) Its inheritance is autosomal recessive (C) Apoproteins A-I and A-II are not synthesise (D) Plasma HDL is increased 	251.	
243.	Genetic deficiency of lipoprotein lipa causes hyperlipoproteinaemia of followin type:		(A) Peripheral proteins (B) Integral proteins (C) Cholesterol (D) Oligosachharides
	(A) Type I (B) Type IIa (C) Type IIb (D) Type V	252.	Acetyl CoA formed from pyruvate can be used for the synthesis of all the following except
244.	Chylomicrons are present in fasting blood samples in hyperlipoproteinaem of following types:		(A) Glucose (B) Fatty acids (C) Cholesterol (D) Steroid hormones
	(A) Types I and IIa (B) Types IIa and IIb (C) Types I and V (D) Types IV and V	253.	Which of the following can be used as a source of energy in extrahepatic tissues: (A) Acetoacetate (B) Acetone
245.	Glutathione is a constituent of		(C) Both (A) and (B) (D) None of these
246	 (A) Leukotriene A₄ (B) Thromboxane A₁ (C) Leukotriene C₄ (D) None of these Prostaglandins are inactivated by	254.	 Anti-inflammatory corticosteroids inhibit (A) Phospholipase A₁ (B) Phospholipase A₂ (C) Cyclo-oxygenase (D) Lipo-oxygenase
240.	(A) 15-Hydroxyprostaglandin dehydrogenase(B) Cyclo-oxygenase	255.	
	(C) Lipo-oxygenase (D) None of these		(A) Prostaglandins (B) Thromboxanes (C) Both (A) and (B) (D) None of these
247.	Phenylbutazone and indomethac inhibit	in 256.	
	 (A) Phospholipase A₁ (B) Phospholipase A₂ (C) Cyclo-oxygenase (D) Lipo-oxygenase 		(A) Increase in capillary permeability(B) Aggregation of platelets(C) Bronchodilatation
248.	Prostaglandins stimulate		(D) None of these
	(A) Aggregation of platelets (B) Lipolysis in adipose tissue	257.	Prostaglandins decrease all of the following except
	(C) Bronchodilatation (D) Gastric acid secretion		(A) Gastric acid secretion (B) Blood pressure
249.	For extramitochondrial fatty acid synthes acetyl CoA may be obtained from	ıs,	(C) Uterine contraction (D) Platelet aggregation
	(A) Citrate (B) Isocitrate (C) Oxaloacetate (D) Succinate	258.	Hypocholesterolaemia can occur in (A) Hyperthyroidism
250.	Fluidity of membranes is increased I the following constituent except	ру	(B) Nephrotic syndrome (C) Obstructive jaundice

(D) Diabetes mellitus

(A) Polyunsaturated fatty acids

259. De novo synthesis and oxidation of fatty acids differ in the following respect:

- (A) Synthesis occurs in cytosol and oxidation in mitochondria
- (B) Synthesis is decreased and oxidation increased by insulin
- (C) NADH is required in synthesis and FAD in oxidation
- (D) Malonyl CoA is formed during oxidation but not during synthesis

260. Free fatty acids released from adipose tissue are transported in blood by

- (A) Albumin
- (B) VLDL
- (C) LDL
- (D) HDL

261. β -Galactosidase is deficient in

- (A) Fabry's disease
- (B) Krabbe's disease
- (C) Gaucher's disease
- (D) Metachromatic leukodystrophy

262. The enzyme deficient in metachromatic leukodystrophy is

- (A) Arylsulphatase A (B) Hexosaminidase A
- (C) Ceramidase
- (D) Sphingomyelinase

263. All of the following statements about generalized gangliosidosis are true except

- (A) It results from deficiency of G_{M1} - β -Gangliosidase
- Breakdown of G_{M1} ganglioside is impaired
- (C) G_{M2} ganglioside accumulates in liver and elsewhere
- (D) It leads to mental retardation

264. Hexosaminidase A is deficient in

- (A) Tay-Sachs disease
- (B) Gaucher's disease
- (C) Niemann-Pick disease
- (D) Fabry's disease

265. Mental retardation occurs in

- (A) Tay-Sachs disease
- (B) Gaucher's disease
- (C) Niemann-Pick disease
- (D) All of these

266. The enzyme deficient in Fabry's disease is

- (A) α-Galactosidase (B) β-Galactosidase
- (C) α-Glucosidase
- (D) β-Glucosidase

267. Highest protein content amongst the following is present in

- (A) Wheat
- (B) Rice
- (C) Pulses
- (D) Soyabean

268. Daily protein requirement of an adult man

- (A) 0.5 gm/kg of body weight
- (B) 0.8 gm/kg of body weight
- 1.0 gm/kg of body weight
- (D) 1.5 gm/kg of body weight

269. Daily protein requirement of an adult woman is

- (A) 0.5 gm/kg of body weight
- (B) 0.8 gm/kg of body weight
- (C) 1.0 gm/kg of body weight
- (D) 1.5 gm/kg of body weight

270. Cysteine can partially meet the requirement of

- (A) Phenylalanine
- (B) Threonine
- (C) Methionine
- (D) None of these

271. Invisible fat is present in

- (A) Milk
- (B) Coconut oil
- (C) Groundnut oil
- (D) Hydrogenated oils

272. Visible fat is present in

- (A) Milk
- (B) Pulses
- (C) Coconut oil
- (D) Egg yolk

273. Fat content of eggs is about

- (A) 7%
- (B) 10%
- (C) 13%
- (D) 16%

274. Fat content of pulses is about

- (A) 5%
- (B) 10%
- (C) 15%
- (D) 20%

275. Predominant fatty acids in meat are

- (A) Saturated
- (B) Monounsaturated
- (C) Polyunsaturated
- (D) Mono and poly-unsaturated

	than 50 % polyunsatu- nclude all of the follow-	286.	In Ames' assay, addition of a carcinogen to the culture medium allows S. typhimu- rium to grow
(A) Groundnut oil	(B) Soyabean oil		(A) In the presence of histidine
(C) Sunflower oil	(D) Safflower oil		(B) In the presence of arginine
Cholesterol is pres	sent in all of the follow-		(C) In the absence of histidine(D) In the absence of arginine
(A) Egg (C) Milk	(B) Fish (D) Pulses	287.	In Ames' assay, liver homogenate is included in the culture medium because
			(A) It converts pro-carcinogens into carcinogens (B) Liver can metabolise histidine
(A) Meat (C) Butter	(B) Fish (D) Milk		(C) Salmonella mainly infects liver (D) Liver is very susceptible to cancer
		288.	Bile pigments are present and urobilino-
(A) Egg yolk (C) Meat	(B) Egg white (D) Fish		gen absent in urine in (A) Haemolytic jaundice
The following cholesterol:	contains the least		(B) Hepatocellular jaundice (C) Obstructive jaundice
(A) Milk	(B) Meat		(D) Crigler-Najjar syndrome
(C) Butter	(D) Cheese	289.	
			gen increased in urine in
			(A) Haemolytic jaundice(B) Hepatocellular jaundice
	\ <i>\</i>		(C) Obstructive jaundice
	• •		(D) Rotor's syndrome
		200	In obstructive jaundice, urine shows
• •	` '	270.	•
	. ,		(A) Absence of bile pigments and urobilinogen(B) Presence of bile pigments and urobilinogen
(A) 50%	(B) 60%		(C) Absence of bile pigments and presence of
(C) 70%	(D) 80%		urobilinogen
	urce of starch among		(D) Presence of bile pigments and absence of urobilinogen
(A) Radish	(B) Spinach	291.	In haemolytic jaundice, urine shows
(C) Potato	(D) Cauliflower		(A) Absence of bile pigments and urobilinogen
			(B) Presence of bile pigments and urobilinogen
	ing except (A) Groundnut oil (C) Sunflower oil Cholesterol is presing except (A) Egg (C) Milk Which of the follocholesterol content (A) Meat (C) Butter Which of the follocholesterol content (A) Egg yolk (C) Meat The following cholesterol: (A) Milk (C) Butter Which of the following cholesterol: (A) Milk (C) Butter Which of the following cholesterol: (A) Milk (C) Butter Which of the following cholesterol: (A) Milk (C) Butter Which of the following cholesterol: (A) Milk (C) Towhich content (A) 50% (C) 70% A significant source content (A) 50% (C) 70% A significant source content (A) Radish	(A) Groundnut oil (B) Soyabean oil (C) Sunflower oil (D) Safflower oil Cholesterol is present in all of the following except (A) Egg (B) Fish (C) Milk (D) Pulses Which of the following has the highest cholesterol content? (A) Meat (B) Fish (C) Butter (D) Milk Which of the following has the highest cholesterol content? (A) Egg yolk (B) Egg white (C) Meat (D) Fish The following contains the least cholesterol: (A) Milk (B) Meat (C) Butter (D) Cheese Which of the following constitutes fibre or roughage in food? (A) Cellulose (B) Pectin (C) Inulin (D) All of these The starch content of wheat is about (A) 50% (B) 60% (C) 70% (D) 80% The starch content of pulses is about (A) 50% (B) 60% (C) 70% (D) 80% A significant source of starch among vegetables is (A) Radish (B) Spinach	ing except (A) Groundnut oil (B) Soyabean oil (C) Sunflower oil (D) Safflower oil Cholesterol is present in all of the following except (A) Egg (B) Fish (C) Milk (D) Pulses Which of the following has the highest cholesterol content? (A) Meat (B) Fish (C) Butter (D) Milk Which of the following has the highest cholesterol content? (A) Meat (B) Fish (C) Butter (D) Fish The following contains the least cholesterol: (A) Milk (B) Meat (C) Meat (D) Fish The following contains the least cholesterol: (A) Milk (B) Meat (C) Butter (D) Cheese 289. Which of the following constitutes fibre or roughage in food? (A) Cellulose (B) Pectin (C) Inulin (D) All of these The starch content of wheat is about (A) 50% (B) 60% (C) 70% (D) 80% The starch content of pulses is about (A) 50% (B) 60% (C) 70% (D) 80% A significant source of starch among vegetables is (A) Radish (B) Spinach

(A) Cyclopentano perhydrophenanthrene

(B) Nitropentano

(C) both (A) and (B)

(D) None of these

(C) Absence of bile pigments and presence of

(D) Presence of bile pigments and absence of

urobilinogen

urobilinogen

292. Serum albumin may be decreased in

- (A) Haemolytic jaundice
- Hepatocellular jaundice
- (C) Obstructive jaundice
- (D) All of these

293. Normal range of serum albumin is

- (A) 2.0-3.6 gm/dl
- (B) $2.0-3.6 \, \text{mg/dl}$
- (C) $3.5-5.5 \, \text{gm/dl}$ (D) $3.5-5.5 \, \text{mg/dl}$

294. Normal range of serum globulin is

- (A) 2.0-3.6 mg/dl
- (B) $2.0-3.6 \, \text{gm/dl}$
- (C) 3.5-5.5 mg/dl(D) $3.5-5.5 \, \text{gm/dl}$

295. Serum albumin: globulin ratio is altered in

- (A) Gilbert's disease (B) Haemolytic jaundice
- (C) Viral hepatitis
- (D) Stones in bile duct

296. Esterification of cholesterol occurs mainly

- (A) Adipose tissue
- (B) Liver
- (C) Muscles
- (D) Kidneys

297. Galactose intolerance can occur in

- (A) Haemolytic jaundice
- (B) Hepatocellular jaundice
- Obstructive jaundice
- (D) None of these

298. Prothrombin is synthesised in

- (A) Erythrocytes
- Reticulo-endothelial cells
- (C) Liver
- (D) Kidneys

299. Prothrombin time remains prolonged even after parenterals administration of vitamin K in

- (A) Haemolytic jaundice
- Liver damage
- Biliary obstruction
- Steatorrhoea

300. All the following statements about obstructive jaundice are true except

- (A) Conjugated bilirubin in serum is normal
- (B) Total bilirubin in serum is raised
- Bile salts are present in urine
- (D) Serum alkaline phosphatase is raised

301. All the following statements about obstructive jaundice are true except

- Prothrombin time may be prolonged due to impaired absorption of vitamin K
- Serum alkaline phosphatase may be raised due to increased release of the enzyme from liver cells
- Bile salts may enter systemic circulation due to biliary obstruction
- (D) There is no defect in conjugation of bilirubin

302. A test to evaluate detoxifying function of liver is

- Serum albumin: globulin ratio (A)
- Galactose tolerance test
- Hippuric acid test
- (D) Prothrombin time

303. Hippuric acid is formed from

- (A) Benzoic acid and alanine
- Benzoic acid glycine
- Glucuronic acid and alanine
- Glucuronic acid and glycine

304. An enzyme which is excreted in urine is

- (A) Lactase dehydrogenase
- (B) Amylase
- Ornithine transcarbamoylase
- (D) None of these

305. Serum gamma glutamyl transpeptidase is raised in

- (A) Haemolytic jaundice
- Myocardial infarction
- Alcoholic hepatitis
- Acute cholecystitis

306. Oliguria can occur in

- (A) Diabetes mellitus
- (B) Diabetes insipidus
- Acute glomerulonephritis
- Chronic alomerulonephritis

307. Urea clearance is the

- (A) Amount of urea excreted per minute
- (B) Amount of urea present in 100 ml of urine
- (C) Volume of blood cleared of urea in one minute
- Amount of urea filtered by glomeruli in one minute

308.		316.	Esters of fatty acids with higher alcohols other than glycerol are said to be
	(A) Glomerular filtration rate (B) Tubular secretion flow		(A) Waxes (B) Fats
	(C) Tubular reabsorption rate(D) Renal plasma flow		(C) Both (A) and (B) (D) None of these
200		31 <i>7</i> .	The combination of an amino alcohol, fatty acid and sialic acid form
309.	Phenolsulphonephthalein excretion test is an indicator of		(A) Phospholipids (B) Sulpholipids
	(A) Glomerular filtration		(C) Glycolipids (D) Aminolipids
	(B) Tubular secretion	312	Hydrolysis of fats by alkali is called
	(C) Tubular reabsorption	510.	(A) Saponification number
	(D) Renal blood low		(B) Saponification
310.	Para-amino hippurate excretion test is an indicator of		(C) Both (A) and (B) (D) None of these
	(A) Glomerular filtration	210	The number of milliliters of 0.1 N KOH
	(B) Tubular secretion	319.	required to neutralize the insoluble fatty
	(C) Tubular reabsorption (D) Renal plasma flow		acids from 5 gms of fat is called
211	•		(A) Acid number (B) Acetyl number
311.	Renal plasma flow of an average adult man is		(C) Halogenation (D) Polenske number
	(A) 120-130 ml/minute	320.	The rate of fatty acid oxidation is
	(B) 325–350 ml/minute		increased by
	(C) 480–52 ml/minute (D) 560–830 ml/minute		(A) Phospholipids (B) Glycolipids (C) Aminolipids (D) All of these
210		221	Lecithin contains a nitrogenous base
312.	Filtration fraction can be calculated from (A) Standard urea clearance and PSP excretion	JZ1.	named as
	(B) Maximum urea clearance and PSP excretion		(A) Ethanolamine (B) Choline
	(C) Maximum urea clearance and PAH		(C) Inositol (D) All of these
	clearance	322.	Lecithins contain an unsaturated fatty
	(D) Inulin clearance and PAH clearance		acid at position:
313.			(A) α (B) α and β
	(A) 0.2 (B) 0.4		(C) β (D) None of these
	(C) 0.6 (D) 0.8	323.	Lecithins are soluble in ordinary solvents
314.			except (A) Benzene (B) Ethyl alcohol
	(A) Acute glomerulonephritis(B) Chronic glomerulonephritis		(C) Methyl alcohol (D) Acetone
	(B) Chronic glomerulonephritis (C) Hypertension	224	Lecithins combine with protein to form
	(D) Hypotension	J24.	-
315.	Among the following, a test of Glomeru-		(A) Phosphoprotein (B) Mucoprotein (C) Lipoprotein (D) Glycoprotein
	lar function is	225	Instead of ester link plasmalogens
	(A) Urea clearance	J2J.	possess an other link in position:
	(B) PSP excretion test		(A) α (B) β
	(C) PAH clearance (D) Hippuric acid excretion test		(C) γ (D) None of these
	(D) The porte dela excretion lesi		

326.	The alkyl radical alcohol:	in plasmalogen is an	336.	Lipoprotiens may be identified more accurately by means of
	, ,	(B) Unsaturated		(A) Electrophoresis
	(C) Both (A) and (B)	(D) None of these		(B) Ultra centrifugation
327.		of sphingomyelins are		(C) Centrifugation
	increased in			(D) Immunoelectrophoresis
	(A) Gaucher's diseas (B) Fabry's disease	e	337.	Very low density lipoproteins are also known as
	(C) Fabrile disease(D) Niemann-Pick dis	ease		 (A) β-lipoproteins (B) Pre β-lipoproteins (C) α-lipoproteins (D) None of these
328.	Sphingomyelins coalcohol named as	ntain a complex amino	338.	The protein moiety of lipoprotein is known
	(A) Serine	(B) Lysolecithin		as
	(C) Sphingosine			(A) Apoprotein (B) Pre-protein
329.	The types of sphin	gomvelins are		(C) Post-protein (D) Pseudoprotein
	(A) 1	(B) 3	339.	The β -lipoprotein fraction increases in
	(C) 4	(D) 5		severe
330.	Glycolipids contain	an amino alcohol:		(A) Diabetes Mellitus (B) Uremia
	(A) Sphingosine			(C) Nephritis (D) Muscular dystrophy
	(C) Both (A) and (B)		340.	Δ° indicates a double bond between carbon atoms of the fatty acids:
331.	Cerebrosides may	also be classified as		(A) 8 and 9 (B) 9 and 10
	(A) Sphingolipids			(C) 9 and 11 (D) 9 and 12
	(C) Aminolipids	(D) Glycolipids	341.	The number of carbon atoms in decanoic
332.		se is characterized		acid present in butter:
	specially by the inc	crease in		(A) 6 (B) 8
	(A) Lignoceric acid (B) Nervonic acid			(C) 10 (D) 12
	(C) Cerebomic acid		342.	Arachidonic acid contains the number of
	(D) Hydroxynervonic	acid		double bonds:
222		glycolipids occurring in		(A) 2 (B) 3
555.	(A) Brain	(B) Liver		(C) 4 (D) 5
		(D) Muscle	343.	The prostaglandins are synthesized from
334	•	nt in cell membrane is		(A) Arachidonic acid (B) Oleic acid
554.	by nature:			(C) Linoleic acid (D) Linolenic acid
	(A) Hydrophilic (C) Both (A) and (B)	(B) Hydrophobic (D) None of these	344.	The lodine number of essential fatty acids of vegetable oils:
225		•		(A) High (B) Very high
333.	the protein content	pproteins increases as t		(C) Very low (D) Low
	(A) Increases		345.	Cholesterol is a
	(B) Decreases			(A) Animal sterol (B) M.F. C ₂₇ H ₄₆ O
	(C) Highly decreases			(C) 5 methyl groups (D) All of these
	(D) Slightly and prom	ptly decreases		

346.	_	ner alcohols named as	356.	Carboxylation of acetyl—CoA to malony — CoA takes place in presence of
047	(A) Methyl (C) Phytyl	(B) Ethyl (D) Cetyl		(A) FAD+ (B) Biotin (C) NAD+ (D) NADP+
347.	to detect	d reaction is performed	357.	Malonyl-CoA reacts with the central
	(A) Cholesterol (C) Fatty acid	(B) Glycerol (D) Vitamin D		(A) $-SH$ group (B) $-NH_2$ group (C) $-COOH$ group (D) $-CH_2OH$ group
348.	Lipose present in hydrolyze fats owi	the stomach cannot ng to	358.	Fatty acid synthesis takes place in the presence of the coenzyme:
	(A) Alkalinity(C) High acidity			(A) NAD+ (B) Reduced NAD (C) NADP+ (D) Reduced NADP
349.	Fatty acids are oxid	dized by	359.	Fatty acids are activated to acyl CoA by
	, ,	(B) β-oxidation(D) All of these		the enzyme thiokinase: (A) NAD+ (B) NADP+
350.		taining even number		(C) CoA (D) FAD+
		carbon atoms as well ted fatty acids are	360.	
	oxidized by	,		(A) Glycerol (B) Fatty acids (C) Glycerophosphates (D) None of these
	(A) α-oxidation (C) ω-oxidation	(B) β-oxidation(D) All of these	361.	The desaturation and chain elongation
351.		ids are first activated		system of polyunsaturated fatty acids are greatly diminished in the absence of
	to acyl CoA in the			(A) Insulin (B) Glycagon
		(B) Mitochodria		(C) Epinephrine (D) Thyroxine
352.		penetrates mitochon-	362.	Prostaglandins are liberated in the circulation by the stimulation of
	dria in the presence (A) Palmitate	(B) Carnitine		(A) Anterior pituitary glands
	(C) Sorbitol	(D) DNP		(B) Posterior pituitary glands (C) Adrenal gland
353.	Acyl-CoA dehydrogenase converts Acyl			(D) Thyroid gland
	presence of the coe	-	363.	based on prostanoic acid which contains
	, ,	(B) NADP+ (D) FAD		carbon atoms:
354.	• •	f long chain fatty acids		(A) 12 (B) 16 (C) 18 (D) 20
	the enzyme thiol	kinase requires the	364.	The carbon chains of prostanoic acid are
	cofactor: (A) Mg ⁺⁺	(B) Ca++		bonded at the middle of the chain by a
	(C) Mn++	(D) K+		(A) 5-membered ring (B) 6-membered ring (C) 8-membered ring (D) None of these
355.	ω-oxidation tak hydroxylase in mid	tes place by the crosomes involving	365.	All active prostaglandins have atleast one double bond between positions:
	(A) Cytochrome b	(B) Cytochrome c		(A) 7 and 8 (B) 9 and 10
	(C) Cytochrome p-450	00(D) Cytochrome a ₃		(C) 11 and 12 (D) 13 and 14

366. The enzyme systems for lengthening and shortening for saturating and desaturating of fatty acids occur in

- (A) Intestine
- (B) Muscle
- (C) Kidney
- (D) Liver

367. Which of the following are classified as essential fatty acids?

- (A) Arachidonic acid (B) Oleic acid
- (C) Acetic acid
- (D) Butyric acid

368. Prostaglandins are synthesized in the body from

- (A) Myristic acid
- (B) Arachidonic acid
- (C) Stearic acid
- (D) Lignoceric acid

369. All the following saturated fatty acids are present in buffer except

- (A) Butyric acid
- (B) Capryllic acid
- (C) Caproic acid
- (D) Capric acid

370. Biological functions of lipids include

- (A) Source of energy
- (B) Insulating material
- (C) Maintenance of cellular integrity
- (D) All of these

371. Saponification number is

- (A) mg of KOH required to saponify one gm of
- (B) mg of KOH required to neutralize free fatty acids of one gms of fat
- (C) mg of KOH required to neutralize the acetic acid obtained by saponification of one gm of fat after it has been acetylated
- (D) None of these

372. Lipids have the following properties:

- (A) Insoluble in water and soluble in fat solvent
- (B) High energy content
- (C) Structural component of cell membrane
- (D) All of these

373. Carbohydrate moiety in cerebrosides is

- (A) Glucose
- (B) Sucrose
- (C) Galactose
- (D) Maltose

374. Which of the following is not an unsaturated fatty acid?

- (A) Oleic acid
- (B) Stearic acid
- (C) Linaoleic acid
- (D) Palmitic acid

375. All the following are functions of prostaglandins except

- (A) Lowering of B.P
- (B) Introduction of labour
- (C) Anti inflammatory
- (D) Prevention of myocardial infraction

376. Calorific value of lipids per gm is

- (A) 4 Kcal
- (B) 8 Kcal
- (C) 9 Kcal
- (D) None of these

377. Fatty acid present in kerotin is

- (A) Lignoceric acid
- (B) Cerebromic acid
- (C) Nervonic acid
- (D) Hydroxynervonic acid

378. All the following are ketones except

- (A) Xylulose
- (B) Ribolose(D) Fructose
- (C) Erythrose
- 379. Saponification:
 - (A) Hydrolysis of fats by alkali
 - (B) Hydrolysis of glycerol by liposes
 - (C) Esterification
 - (D) Reduction

380. Number of ml of 0.1 N KOH required to neutralize fatty acids from 5 gms of fat:

- (A) Iodine number
- (B) Polenske number
- (C) Reichert-Miessl number
- (D) None of these

381. Hydrated density of HD lipoproteins is

- (A) $0.94 \, \text{gm/ml}$
- (B) 0.94-1.006 gm/ml
- (C) 1.006-1.063 gm/ml
- (D) 1.063-1.21 gm/ml

382. Saponification number indicates

- (A) Unsaturation in fat
- (B) Average M.W of fatty acid
- (C) Acetyl number
- (D) Acid number

383.	Acr	olein Test is pos	itive	e for	392.	The	smell of fat tur	ned	rancid is due to
	(A) (C)	Glycerol Carbohydrates		Prostaglandins Proteins			Presence of vit E Phenols		Presence of quinones Volatile fatty acids
384.		ine number der Degree of unsatu			393.		ospholipids are ine components		portant cell mem
	(B) (C)	Saponification nu Acid number Acetyl number					They have glycero	ol ayer:	
385.	Ma	ximum energy	prod	duced by		(D)	They combine cov		
	(A) (C)	Fats Proteins		Carbohydrates Nucleic acids	394.		nich one of the foolipid?	llov	ving is not a phos
386.	Leci	ithins are comp	osec	d of		(A)	Lecithin	(B)	Plasmalogen
	(A)		acid	s + Phosphoric acid +		(C)	Lysolecithin	(D)	Gangliosides
	(B)	Ethanolamine		s + Phosphoric acid +	395.	hur			not synthesized ir to be supplied ir
	(C)	Glycerol + Fatty Serine	acid	s + Phosphoric acid +			Palmitic acid	(B)	Oleic acid
	(D)		acid	s + Phosphoric acid +		(C)	Linoleic acid	(D)	Stearic acid
		Beaine			396.	ln c	ephalin, choline	is r	eplaced by
387.	acio	ds, phosphoric o	acid			(A) (C)	Serine Betaine	, ,	Ethanolamine Sphingosine
		Sphingosine and Glycerol and sph Glycerol and Seri	ingos		397.		e triacyl glycero oproteins are hy		resent in plasmo lyzed by
	(D)	Glycerol and Cho	oline				Linqual lipase		Pancreatic lipase
388.			ımal	ian cells comprise		(C)	Colipase		Lipoprotein lipase
	(A)	stly of Cholesterol Triacyl glycerol		Cholesterol esters Phospholipids	398.		phiphatic lipids Hydrophilic Both (A) and (B)	(B)	Hydrophobic
389.		en choline of le anolamine the		ine is replaced by luct is	399.	Wh			g is not essentia
		Sphingomyelin Plasmalogens		Cephalin Lysolecithine		(A)	Oleic acid Arachidonic acid		Linoleic acid Linolenic acid
390.	Wh acid		ving	is a hydroxy fatty	400.	The	calorific value	of li	pid is
		Oleic acid Caproic acid		Ricinoleic acid Stearic acid			4.0 Kcal/gm 9.0 Kcal/gm		6.0 Kcal/gm 15 Kcal/gm
391.	Acr	olein test is ans			401.			r is	prevented by the
	(A) (C)	Cholesterol Glycosides		Glycerol Sphingol		(A)	dition of Vitamin D Presence of priotin		Tocopherols Presence of 'Cu'

(B) prostaglandins

(D) sphingmyelin

(B) Liver

(D) Intestines

(B) HDL-2

(D) HDL_C

FATS AND FATTY ACID METABOLISM 402. Sphingomyelins on hydrolysis yields 410. Cholesterol is the precursor for the biosynthesis of (A) Glycerol, fatty acids, phosphoric acid and (A) fatty acid (B) Glycerol, sphingosine, choline and fatty acids bile acids (C) Sphingosine, phosphoric acid, Glycerol and 411. Which of the following condition is characterized by ketonuria but without (D) Sphingosine, fatty acids, phosphoric acid and glycosuria? choline (A) Diabetes mellitus 403. Inherited deficiency of enzyme cerebro-Diabetes insipidus sidase produces Prolonged starvation (A) Fabry's disease Addison's disease (B) Niemann pick disease 412. Ketone bodies are formed in (C) Gaucher's disease (D) Tay-sach's disease (A) Kidney (C) Heart 404. Phosphatidic acid on hydrolysis yields 413. Changes in serum high density lipoproteins (A) Glycerol, fatty acids, phosphoric acid, choline (HDL) are more truly reflected by those of (B) Glycerol, fatty acids, phosphoric acid (C) Glycerol, fatty acids, phosphoric acid, (A) HDL-1 Glucose (C) HDL-3 (D) Sphingol, fatty acids, phosphoric acid 414. Mitochondrial lipogenesis requires 405. The maximum number of double bonds (A) bicarbonate present in essential fatty acid is (B) biotin (A) 1 (B) 2 acetyl CoA carboxylase (C) (C) 3 (D) 4 NADPH 406. Cerebrosides are composed of (A) Sphingosine, fatty acids, glycerol and phosphoric acid Sphingosine, fatty acids, galactose (C) Glycerol, fatty acids, galactose

415. Fatty acids having chain length of 10 carbon atoms enter the

- (A) Portal ciruclation (B) Lacteals
- (C) Systemic circulation (D) Colon

416. A soluble system for synthesis of fatty acids have been isolated from avian liver, required for the formation of long chain fatty acids by this system is

- (A) ATP
- (B) Acetyl CoA
- NADPH
- (D) All of these

408. Which amino acid is a lipotropic factor? (A) Lysine

(D) Glycerol, fatty acids, galactose, sphingol

407. Acetoacetic acid and β -OH butyric acid are

formed as

(A) Kidneys

(C) Liver

(B) Leucine

(B) Heart

(D) Intestine

- (C) Tryptophan
- (D) Methionine

409. The class of lipoproteins having a beneficial effect in atherosclerosis is

- (A) Low density of lipoproteins
- (B) very low density lipoproteins
- (C) High density lipoproteins
- (D) Chylomicrons

417. Most animal tissues contain appreciable amounts of lipid, when in the form of depot fat it consists largely of

- (A) Cholesterol ester
- (B) Phosphatides
- Chylomicrons
- (D) Triacylglycerol

418. A fatty acid not synthesized in man is

- (A) Oleic
- (B) Palmitic
- (C) Linoleic
- (D) Stearic

(C) Bile acid

(D) Glycine

419.	The	'free fatty acids	s' (FFA) of plasma:	425.			ype	er lipoproteinemia
	(A)	metabolically inert				re is increase in		
	(B)	mainly bound to β -	-lipoproteins			Chylomicron bond	:	•
	(C)	stored in the fat			(C)	Pre beta	(D)	α
	(D)	mainly bound to se	erum albumin	426.		rmal fat content	of liv	ver is about
420.	Adi	pose tissue whic	ch is a store house for		_	s %.		
	tria	cyl glycerol syni	thesis the same using		(A)		(B)	
	(A)		sed by hydrolysis of triacyl		(C)	10	(D)	15
	(D)	glycerol	1 . 1 1	427.	Ob	esity is accumul	atio	on of in the
	(B)	The glycerol-3-ph metabolism of glud	osphate obtained in the		boo	dy.		
	(C)	2-phosphoglycera			(A)	Water	(B)	NaCl
	(D)	3-phosphoglycera			(C)	Fat	(D)	Proteins
421.			f this class of lipopro-	428.	The	first lipoproteir	ı to	be secreted by the
741.			o ward off coronary		live	er is		
		ırt disease:	•		(A)	VLDL	(B)	nascent VLDL
	(A)	HDL	(B) LDL		(C)	LDL	(D)	IDL
	(C)	VLDL	(D) IDL	429.			1076	es cholesterol from
422.	In t	he extra mitocl	hondrial synthesis of		the	body		
		y acids, CO ₂ is u			(A)	HDL		VLDL
	(A)	To keep the system	m anaerobic and prevent		(C)	IDL	(D)	Chylomicrons
		regeneration of ac	•	430.				lycerol is lipolysed
	(B)		on of malonyl to CoA			he adipose tissu	e bl	ood levels of
	(C)	hydroxybutyryl Co.	A of acetyl CoA to malonyl			reased.		
	(0)	CoA	of acetyl CoA to illatoriyi			FFA only		
	(D)	In the formation of	acetyl CoA from 1 carbon			Glycerol only	Ε Λ Ι.	
	• •	intermediates	•			Free fatty acids (F Triacyl glycero	гАјс	and Glycerol
423.	Cur	rent concepts co	ncerning the intestinal		(D)	, , ,		
			ylglycerols are that	431.				acids with even ns are oxidized to
	(A)		pletely hydrolysed before			ool of		
	(5)		y acids can be absorbed		_	CO ₂	_	Propionic acid
	(B)		d partially and the material of free fatty acids, mono			Acetic acid		Acetyl CoA
			ols and unchanged triacyl					acids in plasma is
		glycerols	0 /	432.		reased by	II y	acias iii piasiiia is
	(C)		ess than 10 carbon atoms			Insulin	(B)	Caffeine
			out equally via lymph and		(C)			Niacin
	(D)	via portal blood	oile the hydrolysis of triacyl	433.	` '			ted as such into
	וטו	glycerols is absorb		400.	CIIC	· ·	crei	ieu us sucii into
424.	Mai		product of cholesterol:		(A)	Urine	(B)	Faeces
1470		Coprosterol	(B) 5-pregnenolone		(C)	Bile		Tears
	(~)	Cobiosieioi	101 2-brediteriordie		1-1	-	1.1	

434. LCAT is (A) Lactose choline alamine transferse Lecithin cholesterol acyl transferase (C) Lecithin carnitine acyl transferase (D) Lanoleate carbamoyl acyl transferase 435. Cholesterol molecule has _ atoms. (A) 27 (B) 21 (C) 15 (D) 12 436. A hydrocarbon formed in cholesterol synthesis is (A) Mevalonate (B) HMG CoA (C) Squalene (D) Zymosterol 437. While citrate is converted to isocitrate in the mitochondria, it is converted to _ in the cytosol. (A) Acetyl CoA + oxaloacetate (B) Acetyl CoA + malonyl CoA (C) Acetyl CoA + Pyruvate (D) Acetyl CoA + acetoacetyl CoA 438. Avidin is antigonistic to (A) Niacin (B) PABA (C) Biotin (D) Pantothenic acid 439. CTP is required for the synthesis of

hydrolyzes facts. It acts as a/an

- (A) peptidase
- (B) hydrolase
- (D) dehydrogenase

440. Lysolecithin is formed from lecithin by the

(B) Proteins

(D) Cholesterol

(A) Fatty acids

Phospholipids

- (A) Phospholipase A₁ (B) Phospholipase A₂
- (C) Phospholipase C (D) Phospholipase D

441. Fatty acids can not be converted into carbohydrates in the body, as the following reaction is not possible:

- (A) Conversion of glucose-6-phosphate into glucose
- (B) Fructose 1, 6 diphosphate to fructose-6phosphate
- (C) Transformation of acetyl CoA to pyruvate
- (D) Formation of acetyl CoA from fatty acids

442. Cholesterol circulates in blood stream chiefly as

- (A) Free cholesterol
- (B) Ester cholesterol
- Low density lipoproteins
- Low density lipoproteins and high density lipoproteins

443. What is the sub cellular site for the β oxidation of fatty acids?

- (A) Nucleus
- (B) Mitochondria
- (C) Lysosome
- (D) Cytosol

444. A diet containing this fat is helpful in lowering the blood cholesterol level.

- (A) Unsaturated
- (B) Saturated
- (C) Vitamin enriched (D) Refined

445. Phospholipase A, is an enzyme which removes a fatty acid residue from lecithin to form

- (A) Lecithin fragments
- Phosphotidic acid
- Glyceryl phosphate
- Lysolecithin

446. Pancreatic lipose is an enzyme which

- (C) carbohydrates

447. This interferes with cholesterol absorption

- (A) Lipoprotein lipase
- Creatinase
- 7-dehydrocholesterol
- **β**-sitosterol

448. The carbon chain of fatty acids is shortened by 2 carbon atoms at a time. This involves successive reactions catalysed by 4-enzymes. These act the following order:

- (A) Acetyl CoA dehydrogenase, β-OH acyl CoA dehydrogenase, enoyl hydrase, thiolose
- Acyl CoA dehydrogenase, thiolase, enoyl hydrase, β-OH acyl CoA dehydrogenase
- (C) Acyl CoA dehydrogenase, thiolose, enoyl hydrase, β-OH acyl CoA dehydrogenase
- (D) Enoyl hydrase, β-OH acyl CoA dehydrogenase, acyl CoA dehydrogenase, thiolose,

\sim			
449.	Acyl carrier protein is involved i synthesis of	n the 457.	Very low density lipoproteins are relatively rich in
	(A) protein (B) glycogen		(A) Cholesterol (B) Triacyl glycerol (C) Free fatty acids (D) Phospholipids
	(C) fatty acid outside the mitochondria	458.	Neutral fat is stored in
	(D) fatty acid in the mitochondria		(A) Liver (B) Pancreas
450.	1 molecule of palmitic acid on		(C) Adipose tissue (D) Brain
	oxidation to CO ₂ will yield molecu ATP (as high energy bonds):	les of 459.	A pathway that requires NADPH as a
	(A) 129 (B) 154		cofactor is (A) Fatty acid oxidation
	(C) 83 (D) 25		(B) Extra mitochondrial denovo fatty acid
451.	HMG CoA is formed in the metaboli	sm of	synthesis
	(A) Cholesterol, ketones and leucine		(C) Ketone bodies formation
	(B) Cholesterol, fatty acid and Leucine	4.0	(D) Glycogenesis
	(C) Lysine, Lecuine and Isoleucine (D) Ketones, Leucine and Lysine	460.	The 'Committed step' in the biosynthesis of cholesterol from acetyl CoA is
450	,		(A) Formation of acetoacetyl CoA from acetyl CoA
452.	NADPH is produced when this en acts	zyme	
	(A) Pyruvate dehydrogenase		(B) Formation of mevalonate from HMG CoA(C) Formation of HMG CoA from acetyl CoA and
	(B) Malic enzyme		acetoacetyl CoA
	(C) Succinate dehydrogenase		(D) Formation of squalene by squalene synthetase
	(D) Malate dehydrogenase		In β -Oxidation of fatty acids, which of the
453.	As a result of each oxidation a long fatty acid is cleaved to give	chain	following are utilized as coenzymes? (A) NAD+ and NADP+
	(A) An acid with 3-carbon less and propion	•	(B) FADH ₂ and NADH + H ⁺
	(B) An acid with 2-carbon less and acety		(C) FAD and FMN (D) FAD and NAD+
	(C) An acid with 2-carbon less and acety(D) An acid with 4-carbon and butyryl Co	. A	• •
151	Liposomes are	462.	The most important source of reducing equivalents for FA synthesis on the liver
757.	(A) Lipid bilayered (B) Water in the n	niddle	is
	(C) Carriers of drugs (D) All of these	madic	(A) Glycolysis
455.	Long chain fatty acyl CoA ester	s are	(B) HMP-Shunt (C) TCA cycle
	transported across the mitochor		(D) Uronic acid pathway
	membrane by	463.	All of the following tissue are capable of
	(A) cAMP (B) Prostaglandin (C) Carnitine (D) Choline		using ketone bodies except
1E4	. ,	ian af	(A) Brain (B) Renal cortex
456.	The acetyl CoA formed on β-oxidational long chain fatty acids is metabo	olized	(C) R.B.C. (D) Cardiac muscle
	under normal circumstances to	464.	The major source of cholesterol in arterial smooth muscle cells is from
	(A) CO ₂ and water (B) Cholesterol		(A) IDL (B) LDL
	(C) Fatty acids (D) Ketone bodies	i	(C) HDL (D) Chylomicrons

(D) They may be excreted in urine

(D) Arginine

(C) Choline

465.		e synthesized from fatty roducts by which of the 5?	472.	In synthesis of Triglyceride from α -Glycerophosphate and acetyl CoA, the first intermediate formed is				
	(A) Liver (C) Kidney	(B) Skeletal muscles(D) Brain			β-diacyl glycer Monoacyl glyc		•	cid
466.	in mammalian liv	of fatty acids occurring ver takes place in which subcellular fractions of	473.	acio	ring each cycl d, all the fol nerated excep	lowing		
	(A) Nucleus (C) Lysosomes	(B) Ribosomes (D) Microsomes			NADH FAD		H ₂ O Acyl CoA	
467.	derivatives mu conversion of acc	owing cofactors or their st be present for the etyl CoA to malonyl CoA ial fatty acid synthesis?	474.	of p	energy yield products gene le of β-oxidat	rated b	y second rea	ction
	(A) Biotin (C) FMN	(B) FAD (D) ACP		, ,	5 ATP 1 <i>7</i> ATP		12 ATP 34 ATP	
468.		owing statement regar-	475.		xidation of in produces	odd-c	arbon fatty	acid
	• •	acyl CoA as a substrate esters		(C)	Succinyl CoA Acetyl CoA	(D)	Propionyl CoA Malonyl CoA	محما لم
		or its activity	476.	Dro	wn aainase t	issiie is		
	(D) Yields acetyl Co	,	476.		wn adipose t ich of the foll			a by
469.	(D) Yields acetyl Co All statements re glutaryl CoA are	oA as a product garding 3-OH-3 methyl true except	476.	wh (A)	ich of the followers of	owing? e quanti	? ties in adult hun	nans
469.	(D) Yields acetyl Co All statements re glutaryl CoA are (A) It is formed in th (B) Required in keto	pA as a product garding 3-OH-3 methyl true except ne cytoplasm ogenesis	476.	wh (A)	Present in larg Mitochondrial adipose tissue Oxidation and coupled	e quanti content phosp	ties in adult hun It higher than It horylation are	nans white
469.	(D) Yields acetyl Co All statements re glutaryl CoA are (A) It is formed in th (B) Required in ket (C) Involved in synt	pA as a product garding 3-OH-3 methyl true except ne cytoplasm ogenesis		(A) (B) (C) (D)	Present in large Mitochondrial adipose tissue Oxidation and coupled Absent in hibe	e quanti content phospl	ties in adult hun it higher than horylation are t animals	nans white
	(D) Yields acetyl Co All statements re glutaryl CoA are (A) It is formed in th (B) Required in ket (C) Involved in synt (D) An intermediate Which of the fewould contribute	pA as a product garding 3-OH-3 methyl true except ne cytoplasm ogenesis hesis of Fatty acid e in cholesterol biosynthesis ollowing lipoproteins e to a measurement of ol in a normal individual		(A) (B) (C) (D) (A) (B) (C)	ich of the followers in large Mitochondrial adipose tissue Oxidation and coupled Absent in hibe to sis in partly Over production Under product Increased carbon sis in partly to the product Increased carbon sis in partly the product in partly the product in partly the product in partly the partly	e quanti content d phospl rnating a ascrib on and C ion of G	ties in adult hun at higher than horylation are t animals ed to Glucose lucose e utilization	nans white
	(D) Yields acetyl Co All statements re glutaryl CoA are (A) It is formed in th (B) Required in ket (C) Involved in synt (D) An intermediate Which of the fivould contribute plasma cholester following a 12 hi (A) Chylomicrons (B) VLDL	pA as a product garding 3-OH-3 methyl true except ne cytoplasm ogenesis chesis of Fatty acid e in cholesterol biosynthesis collowing lipoproteins e to a measurement of ool in a normal individual r fast?	477.	(A) (B) (C) (D) (A) (B) (C) (D)	Present in large Mitochondrial adipose tissue Oxidation and coupled Absent in hibe cosis in partly Over production Under production of the	e quantile e quantile content of phospile rnating of ascriber on and Coion of Goodydrat tilization	ties in adult hun it higher than horylation are t animals ed to Glucose lucose e utilization	nans white
	(D) Yields acetyl Co All statements re glutaryl CoA are (A) It is formed in th (B) Required in keta (C) Involved in synt (D) An intermediate Which of the fivould contribute plasma cholester following a 12 has (A) Chylomicrons	pA as a product garding 3-OH-3 methyl true except ne cytoplasm ogenesis chesis of Fatty acid e in cholesterol biosynthesis collowing lipoproteins e to a measurement of ool in a normal individual r fast?	477.	(A) (B) (C) (D) Ket (A) (B) (C) (D) The (A)	Present in large Mitochondrial adipose tissue Oxidation and coupled Absent in hibe Posis in partly Over production Under production Under production Increased fat under free fatty ac Stored in fat de Mitochondria Increased in fat de Stored in fat de Mitochondria Increased fat under free fatty ac Stored in fat de Mitochondria Increased in fat de Mitochondria Increased fat under free fatty ac Stored in fat de Mitochondria Increased in fat de Mitochondria Increased fat under fatte fatty ac Stored in fat de Mitochondria Increased Incre	e quantile content of phosplar rnating a scrib on and Content of Goodydrat tilization ids in bepots	ties in adult hunder than thorylation are than animals ed to Glucose lucose e utilization are the slood are	nans white
470.	(D) Yields acetyl Co All statements re glutaryl CoA are (A) It is formed in th (B) Required in keth (C) Involved in synt (D) An intermediate Which of the f would contribute plasma cholester following a 12 h (A) Chylomicrons (B) VLDL (C) Both VLDL and (D) LDL All the following ketone bodies are	garding 3-OH-3 methyl true except ne cytoplasm ogenesis hesis of Fatty acid in cholesterol biosynthesis ollowing lipoproteins to a measurement of ol in a normal individual r fast? LDL g statements regarding te true except	477.	(A) (B) (C) (D) (A) (B) (C) (D) The	resent in large Mitochondrial adipose tissue Oxidation and coupled Absent in hibe cosis in partly Over production Under production of the costs of t	e quanti e quanti content d phospl rnating a ascrib on and C ion of G ohydrat tilization ids in b epots to β-lipo to serum	ties in adult hund thigher than thorylation are to continuous ed to cose lucose e utilization the colood are proteins a albumin	nans white
470.	(D) Yields acetyl Co All statements re glutaryl CoA are (A) It is formed in th (B) Required in keth (C) Involved in synt (D) An intermediate Which of the f would contribute plasma cholester following a 12 h (A) Chylomicrons (B) VLDL (C) Both VLDL and (D) LDL All the following ketone bodies are	garding 3-OH-3 methyl true except ne cytoplasm ogenesis chesis of Fatty acid e in cholesterol biosynthesis collowing lipoproteins e to a measurement of col in a normal individual or fast? LDL g statements regarding the true except efform starvation	477. 478.	(A) (B) (C) (D) Ket (A) (B) (C) (D) The (A) (B) (C) (D)	ich of the followers in large Mitochondrial adipose tissue Oxidation and coupled Absent in hibe to sis in partly Over production Under product Increased carbonic Increased fat ut free fatty ac Stored in fat do Mainly bound Mainly bound	e quantil content depends on and Content depends on and Content depends on β-lipo to serum most inaction of Geophydrate depends of β-lipo to serum most inaction of Geophydrate depends of β-lipo to serum most inaction of Geophydrate depends of β-lipo to serum most inaction of Geophydrate depends of β-lipo to serum most inaction of Geophydrate depends of Geophydrate	ties in adult hund thigher than thorylation are than animals ed to Glucose lucose e utilization the proteins an albumin ctive	nans white

(102)MCQs IN BIOCHEMISTRY

480.	A metabolite which is common to pathways of cholesterol biosynthesis from acetyl-CoA and cholecalciferol formation from cholesterol is						
	(A) Zymosterol						

- (B) Lumisterol
- Ergosterol
- 7 Dehydrocholesterol

481. Acetyl CoA required for extra mitochondrial fatty acid synthesis is produced by

- (A) Pyruvate dehydrogenase complex
- (B) Citrate lyase
- (C) Thiolase
- (D) Carnitine-acyl transferase

482. Biosynthesis of Triglyceride and Lecithine both require an intermediate:

- (A) Monoacyl glycerol phosphate
- (B) Phosphatidic acid
- (C) Phosphatidyl ethanol amine
- (D) Phosphatidyl cytidylate

483. The rage limiting step cholesterol biosynthesis is

- (A) Squalene synthetase
- Mevalonate kinase
- HMG CoA synthetase
- (D) HMG CoA reductase

484. All the following are constituents of ganglioside molecule except

- (A) Glycerol
- (B) Sialic acid
- (C) Hexose sugar
- (D) Sphingosine

485. An alcoholic amine residue is present in which of the following lipids?

- (A) Phosphatidic acid (B) Cholesterol
- Sphingomyelin (D) Ganglioside

486. Sphingosine is the backbone of all the following except

- (A) Cerebroside
- (B) Ceramide
- (C) Sphingomyelin
- (D) Lecithine

487. Chylomicron, intermediate density lipoproteins (IDL), low density lipoproteins (LDL) and very low density lipoproteins (VLDL) all are serum lipoproteins. What is

the correct ordering of these particles from the lowest to the greatest density?

- (A) LDL, IDL, VLDL, Chylomicron
- (B) Chylomicron, VLDL, IDL, LDL
- VLDL, IDL, LDL, Chylomicron
- (D) Chylomicron, IDL, VLDL, LDL

A compound normally used to conjugate bile acids is

- (A) Serine
- (B) Glycine
- Glucoronic acid
- (D) Fatty acid

489. Which of the following lipoproteins would contribute to a measurement of plasma cholesterol in a normal person following a 12 hr fast?

- (A) High density lipoprotiens
- (B) Low density lipoproteins
- Chylomicron
- (D) Chylomicron remnants

490. Which of the following products of triacylglycerol breakdown and subsequent **β-Oxidation may undergo gluconeo**genesis?

- (A) Acetyl CoA
- (B) Porpionyl CoA
- (C) All ketone bodies (D) Some amino acids

491. Which of the following regulates lipolysis in adipocytes?

- (A) Activation of fatty acid synthesis mediated by CAMP
- (B) Glycerol phosphorylation to prevent futile esterification of fatty acids
- Activation of triglyceride lipase as a result of hormone stimulated increases in CAMP levels
- (D) Activation of CAMP production by Insulin

492. Which one of the following compounds is a key intermediate in the synthesis of both triacyl glycerols and phospholipids?

- (A) CDP Choline
- (B) Phosphatidase
- (C) Triacyl glyceride (D) Phosphatidyl serine

493. During each cycle of on going fatty acid oxidation, all the following compounds are generated except

- (A) H₂O
- (B) Acetyl CoA
- (C) Fatty acyl CoA
- (D) NADH

494. All the following statements describing lipids are true except (A) They usually associate by covalent interactions

- (B) They are structurally components of membranes
- (C) They are an intracellular energy source
- (D) They are poorly soluble in H₂O

495. All the following statements correctly describe ketone bodies except

- (A) They may result from starvation
- (B) They are present at high levels in uncontrolled diabetes
- (C) They include—OH β-butyrate and acetone
- (D) They are utilized by the liver during long term starvation

496. Which of the following features is predicted by the Nicolson-Singer fluid mosaic model of biological membranes?

- (A) Membrane lipids do not diffuse laterally
- Membrane lipid is primarily in a monolayer
- (C) Membrane lipids freely flip-flop
- (D) Membrane proteins may diffuse laterally

497. Oxidative degradation of acetyl CoA in the citric acid cycle gives a net yield of all the following except

- (A) FADH₂
- (B) 3 NADH
- (C) 2 ATP
- (D) 2CO₂

498. All the following correctly describe the intermediate 3-OH-3-methyl glutaryl CoA

- (A) It is generated enzymatically in the mitochondrial matrix
- (B) It is formed in the cytoplasm
- It inhibits the first step in cholesterol synthesis
- It is involved in the synthesis of ketone bodies

499. Intermediate in the denovo synthesis of triacyl glycerols include all the following except

- (A) Fatty acyl CoA
- (B) CDP diacyl glycerol
- (C) Glycerol-3-phosphate
- (D) Lysophosphatidic acid

500. Mitochondrial α-ketoglutarate dehydrogenase complex requires all the following to function except

- (A) CoA
- (B) FAD
- (C) NAD+
- (D) NADP+

501. Each of the following can be an intermediate in the synthesis of phosphatidyl choline except

- (A) Phosphatidyl inositol
- CDP-choline
- (C) Phosphatidyl ethanolamine
- (D) Diacylglycerol

502. High iodine value of a lipid indicates

- (A) Polymerization
- (B) Carboxyl groups
- (C) Hydroxyl groups
- (D) Unsaturation

503. Cholesterol, bile salts, vitamin D and sex hormones are

- (A) Mucolipids
- (B) Glycolipids
- (C) Phospholipids
- (D) Isoprenoid lipids

504. Water soluble molecular aggregates of lipids are known as

- (A) Micelle
- (B) Colloids
- (C) Sphingol
- (D) Mucin

505. Hypoglycemia depresses insulin secretion and thus increases the rate of

- (A) Hydrolysis
- (B) Reduction
- (C) Gluconeogenesis (D) Respiratory acidosis

506. The process of breakdown of glycogen to glucose in the liver and pyruvate and lacate in the muscle is known as

- (A) Glyogenesis
- (B) Glycogenolysis
- (C) Gluconeogenesis (D) Cellular degradation

507. Across a membrane phospholipids act as carrier of

- (A) Organic compounds
- (B) Inorganic ions
- (C) Nucleic acids
- (D) Food materials

508. Osteomalacia can be prevented by the administration of calcium and a vitamin:

- (A) A
- (B) B
- (C) C
- (D) D

509.	Milk	c sugar is know	n a	ıs	519.			sork	ed fat appears in
	(A)	Fructose	(B)	Glucose			forms of	(5)	
	(C)	Sucrose	(D)	Lactose		٠,	HDL		Chylomicrone
510.				HCl and mucopro-		(C)	VLDL	(D)	LDL
			e g	astric juice help in	520.	Dai	ily output of ure	a in	grams is
		absorption of Vitamin B ₂	(B)	Tocopherols		, ,	10 to 20		15 to 25
		Folic acid		-		(C)	20 to 30	(D)	35 to 45
511		ıse can act only			521.		emia occurs in		
J	•	2.5–4		3.5–5			Cirrohsis of liver		•
		4 to 5	, ,	5.5–3 5–7		(C)	Diabetes mellitus	(D)	Coronary thrombosis
512	Rile	is produced by			522.	Car	rboxyhemoglob	in is	formed by
J 1 Z.		Liver		Gall-bladder			CO		CO ₂
		Pancreas		Intestine		(C)	HCO ₃	(D)	HCN
512					523.				ned as a result of
313.		n-protein part o		-		_		aem	oglobin by oxida-
		Retinal Carotene		Retinol Repsin			n agent:	(D)	
				•			Oxygen of Air K₄Fe(CN) ₆		2 Z
514.		athway that rec or is	JUIT	es NADPH as a co-					·
		Extramitochondric	ıl fol	ic acid synthesis	524.		themoglobin car bin by) be	reduced to haemo-
		Ketone body form				•	Removal of hydro	aon	
		Glycogenesis					Vitamin C	gen	
	(D)	Gluconeogenesis				٠,	Glutathione		
515.	LCA	T activity is ass	ocic	ated with which of			Creatinine		
	the	lipo-protein co	npl	ex?	525.	Fat	s are solids at		
	(A)	VLDL	(B)	Chylomicrones	0_01		10°C	(B)	20°C
	(C)	IDL	(D)	HDL			30°C		40°C
516.				acids which of the	526.	, ,		. ,	ith higher alcohol
		•		as co-enzymes?	J20.		er than glycero		
		NAD+ and NADI		T.I.			Oils		Polyesters
		FAD H ₂ and NAD FAD and FMN)H +	H ⁺			Waxes		Terpenoids
		FAD and NAD+			527.	The	main physiologi		ouffer in the blood is
517			.L.	he fastest electro-	5 _2 ·		Haemoglobin bu		
317.				lowest TG content		(B)		1101	
	are	, ,				(C)	Phosphate		
	(A)	VLDL	(B)	LDL		(D)	•		
	(C)	HDL	(D)	Chylomicrones	528.	All	of the following	sub	stances have been
518.	The	essential fatty	acio	ds retard			ed to estimate G		
	(A)	Atherosclerosis	(B)	Diabetes mellitus		(A)	Inulin	(B)	Creatinine
	(C)	Nepritis	(D)	Oedema		(C)	Phenol red	(D)	Mannitol

529.	Relationship between the creatinine concent	ween GFR and seum ration is	538.	3. For the activity of amylase which of the following is required as co-factor?
	(A) Non-existent	(B) Inverse		(A) HCO_3 (B) Na^+
	(C) Direct	(D) Indirect		(C) K+ (D) Cl
530.	the following exce	-	539.	 Which of the following hormone increases the absorption of glucose fron G.I.T?
	(A) Phosphates (C) RBC	(B) Protein (D) WBC		(A) Insulin (B) Throid hormones (C) Glucagon (D) FSH
531.	Urine specific grav	ity of 1.054 indicates	540.). Predominant form of storage:
	(A) Excellent renal fu(B) Inappropriate sec(C) Extreme dehydra	cretion of ADH		(A) Carbohydrates (B) Fats (C) Lipids (D) Both (B) and (C)
	(D) Presence of gluco		541.	. Degradations of Hb takes place in
532.	In hemolytic jar bilirubin is	undice, the urinary		(A) Mitochondrion (B) Erythrocytes (C) Cytosol of cell (D) R.E. cells
	(A) Normal (B) Absent		542.	Biluveridin is converted to bilirubin by the process of
	(C) More than normal (D) Small amount is p			(A) Oxidation (B) Reduction (C) Conjugation (D) Decarboxylation
533.	In obstructive jaur	ndice, urinary bilirubin	543.	3. Amylase present in saliva is
	is	-		(A) α-Amylase (B) β-Amylae
	(A) Absent			(C) γ-Amylase (D) All of these
	(B) Increased (C) Present		544.	 Phospholipids are important cell mem brane components since
	(D) Present in small o	amount		(A) They have glycerol
534.	In hemolytic jaund	ice, bilirubin in urine is		(B) Form bilayers in water
	(A) Usually absent			(C) Have polar and non-polar portions(D) Combine covalently with proteins
	(B) Usually present		EAE	• • •
	(C) Increased very m (D) Very low	uch	545.	5. Which of the following is not a phospho lipids?
535.	The pH of gastric j	uice of infants is		(A) Lecithin (B) Plasmalogen
505.	(A) 2.0	(B) 4.0		(C) Lysolecithin (D) Gangliosides
	(C) 4.5	(D) 5.0	546.	A fatty acid which is not synthesized in human body and has to be supplied in the disk in
536.		s about 7.4 when the HCO ₃) and (H ₂ CO ₃) is		the diet is (A) Palmitic acid (B) Oleic acid
	(A) 10:1	(B) 20:1		(C) Linoleic acid (D) Stearic acid
	(C) 25:1	(D) 30:1	547.	
537.	The absorption of o	glucose is decreased by		(A) Myelin sheath (B) Stabilizes chylomicrans
	(A) Vitamin A	(B) Vitamin D		(C) Erythrocyte membrane
	(C) Thiamine	(D) Vitamin B ₁₂		(D) All of these

548.		ich of the follo y acids?	win	g is not essential	553.		ermatozoa in se owing sugar fo		al fluid utilises the tabolism:
		Oleic acid Arachidonic acid		Linoleic acid Linolenic acid		(A) (C)	Galactose Sucrose		Glucose Fructose
549.	(A)	caloric value of 6.0 Kcal/g 15.0 Kcal/g	(B)	9.0 Kcal/g	554.	mo (A)	oot fats of man stly of Cholesterol Cerebrosides	(B)	ian cells comprise Phospholipid Triglycerol
550.	pre	sent in essential	fat	•	555.	Wh		lecith	nin is replaced by
	(A) (C)		(B) (D)			(A) (C)	Spingomyelin Plasmalogens		Cephalin Lysolecithin
551.		staglandin synf vating phospho		is is increased by uses by	556.	Wh		ving	is a hydroxyl fatty
		Mepacrine Glucocorticoids		Angiotensin II Indomenthacin		(A) (C)	Oleic Acid Caproic acid		Ricinoleic acid Arachidonic acid
552.	Selv	vanof's test is p	osit	ive in	557.	Acr	oleic test is give	en by	/
	(A) (C)	Glucose Galactose	(B) (D)	Fructose Mannose		(A) (C)	Cholesterol Glycosides		Glycerol Sphingol

	_	_	_	
_	1	Ω	7	1
(-1	U.	/	
\	_	-		/

ANSWERS					
1. A	2. A	3. C	4. C	5. D	6. A
7. C	8. D	9. D	10. B	11. D	12. A
13.B	14. A	15. D	16. B	17. B	18. D
19. C	20. D	21. C	22. A	23. D	24. C
25. A	26. A	27. C	28. B	29. B	30. D
31. A	32. A	33. C	34. A	35. A	36. C
37. D	38. A	39. B	40. C	41. D	42. A
43.B	44. C	45. D	46. A	47. D	48. B
49. C	50. C	51. A	52. B	53. D	54. B
55. C	56. D	57. A	58. B	59. D	60. C
61. A	62. A	63. A	64. D	65. B	66. A
67. A	68. B	69. A	70. A	71. A	72. B
73. A	74. D	75. B	76. A	<i>77</i> . B	78. A
79. B	80. C	81. C	82. A	83. A	84. A
85. B	86. B	87. A	88. B	89. D	90. C
91. D	92. B	93. A	94. D	95. B	96. A
97. B	98. D	99. A	100. A	101. C	102. B
103. A	104. B	105. C	106. C	107. B	108. A
109. B	110. C	111. D	112. A	113. A	114. A
115. D	116. A	117. A	118. D	119. C	120. D
121. D	122. A	123. A	124. D	125.B	126. A
127. B	128. A	129. B	130. C	131.B	132. C
133. C	134. B	135. D	136. A	137. C	138. C
139. C	140. B	141.B	142. B	143. C	144. D
145. B	146. D	147. C	148. B	149. A	150. A
151. A	152. A	153. C	154. B	155. D	156. D
1 <i>57</i> . D	158. D	159. D	160. C	161.B	162. B
163. D	164. C	165. D	166. B	167. D	168. B
169. C	170. A	171. D	172. C	173. A	1 <i>74</i> . B
1 <i>7</i> 5. B	176. C	1 <i>77</i> . D	1 <i>7</i> 8. B	1 <i>7</i> 9. B	180. C
181. C	182. B	183. C	184. D	185. D	186. D
187. C	188. B	189. D	190. B	191. C	192. D
193. C	194. C	195. A	196. D	197. B	198. D
199. A	200. C	201. A	202. D	203. C	204. B
205. D	206. A	207. D	208. A	209. C	210. C
211.B	212. A	213. C	214. D	215. D	216. C
217. C	218. D	219. A	220. C	221. D	222. C
223. D	224. D	225. B	226. D	227. D	228. A
229. D	230. B	231. A	232. A	233. D	234. B
235. C	236. C	237. D	238. C	239. B	240. D
241.B	242. D	243. A	244. C	245. C	246. A

247. C	248. C	249. A	250. A	251. C	252. A
253. A	254. B	255. C	256. A	257. C	258. A
259. A	260. A	261.B	262. A	263. C	264. A
265. D	266. A	267. D	268. C	269. C	270. C
271. A	272. C	273. C	274. A	275. A	276. A
277. D	278. C	279. A	280. A	281. D	282. C
283. B	284. C	285. A	286. C	287. A	288. C
289. A	290. D	291. C	292. B	293. C	294. B
295. C	296. B	297. B	298. C	299. B	300. A
301.B	302. C	303.B	304. C	305. C	306. A
307. A	308. B	309. D	310. D	311. D	312. A
313. C	314. A	315. D	316. A	317. C	318.B
319. D	320. A	321.B	322. C	323. D	324. C
325. B	326. A	327. B	328. C	329. B	330. C
331. A	332. C	333. A	334. A	335. A	336. D
337. B	338. A	339. A	340. B	341. C	342. C
343. A	344. D	345. D	346. D	347. A	348. C
349. D	350. B	351. A	352. B	353. D	354. B
355. C	356. C	357. A	358. D	359. C	360. B
361. A	362. C	363. D	364. B	365. A	366. D
367. A	368. D	369. C	370. D	371. C	372. D
373.B	374. B	375. D	376. C	377. A	378. C
379. A	380. B	381. D	382.B	383. A	384. A
385. A	386. A	387. A	388. C	389. B	390. B
391.B	392. D	393. C	394. D	395. C	396. B
397. D	398. C	399. A	400. C	401.B	402. D
403. C	404. B	405. D	406. B	407. C	408. D
409. C	410. C	411. C	412.B	413.B	414. D
415. A	416. D	417. D	418. C	419. D	420. B
421. A	422. C	423. B	424. C	425. B	426. A
427. C	428. B	429. A	430. C	431. D	432. B
433. C	434. B	435. A	436. C	437. A	438. C
439. C	440. B	441. C	442. D	443. B	444. A
445. D	446. B	447. D	448. B	449. C	450. A
451. A	452. B	453. B	454. D	455. C	456. A
457. B	458. C	459. B	460. B	461. D	462. B
463. C	464. B	465. A	466. D	467. A	468. A
469. B	470. D	471.B	472. D	473.B	474. D
475. D	476. B	477. D	478. C	479. A	480. D
481.B	482.B	483. D	484. A	485. C	486. D
487. B	488. B	489. A	490. B	491. C	492. B
493. A	494. A	495. D	496. D	497. C	498. C

FATS AND FATTY ACID METABOLISM

(1	09)
_	<u>_</u>	_	/

499. B	500. D	501. A	502. D	503. D	504. A
505. C	506. B	507. B	508. D	509. D	510. D
511. D	512. A	513. A	514. A	515. D	516. D
517. C	518. A	519.B	520. C	521.B	522. A
523. C	524. B	525. B	526. C	527. D	528. C
529. B	530. B	531. D	532. C	533. B	534. A
535. D	536. B	537. C	538. D	539. B	540. D
541. D	542. B	543. A	544. C	545. D	546. C
547. D	548. A	549. B	550. C	551.B	552. B
553. D	554. D	555. B	556. B	557. B	

EXPLANATIONS FOR THE ANSWERS

(110)

- 5. D The fatty acids that cannot be synthesized by the body and therefore should be supplied through the diet are referred to as essential fatty acids (EFA). Linoleic acid and linolenic acid are essential. Some workers regard arachidonic acid as an EFA although it can be synthesized from linoleic acid.
- 61. A Phrynoderma (toad skin) is an essential fatty acid deficiency disorder. It is characterized by the presence of horny eruptions on the posterior and the lateral parts of the limbs, on the back and buttocks.
- 120. D The hydrolysis of triacylglycerols by alkali to produce glycerol and soaps is known as saponification.
- 173. A Reichert-Meissl number is defined as the number of moles of 0.1 N KOH required to completely neutralize the soluble volatile fatty acids distilled from 5 g fat.
- 231. A Sphingomyelins (sphingophospholipids) are a group of phospholipids containing sphingosine as the alcohol (in place of glycerol in other phospholipids).

- 285. A Cyclopentanoperhydrophenanthrene (CPPP), it consists of a phenanthrene nucleus to which a cyclopentene ring is attached.
- 345. D Cholesterol is an animal sterol with a molecular formula $C_{27}H_{46}O$. it has one hydroxyl group at C_3 and a double bond between C_5 and C_6 . An 8 carbon aliphatic side chain is attached to C_{17} , Cholesterol contains of total 5 methyl groups.
- 398. C The lipids which possess both hydrophobic and hydrophilic groups are known as amphipathic lipids (Greek: amphi- both; pathos- passion).
- 454. D Liposomes have an intermittent aqueous phase in lipid bilayer. They are produced when amphipathic lipids in aqueous medium are subjected to sonification. Liposomes are used as carriers of drugs to target tissues.
- 540. D Fats (triacyglycerols) are the most predominant storage form of energy, since they are highly concentrated form of energy (9 Cal/g) and can be stored in an anhydrous form (no association with water).

CHAPTER 5

VITAMINS

1. Vitamins are

- (A) Accessory food factors
- (B) Generally synthesized in the body
- (C) Produced in endocrine glands
- (D) Proteins in nature

2. Vitamin A or retinal is a

- (A) Steroid
- (B) Polyisoprenoid compound containing a cyclohexenyl ring
- (C) Benzoquinone derivative
- (D) 6-Hydroxychromane

3. β -Carotene, precursor of vitamin A, is oxidatively cleaved by

- (A) β-Carotene dioxygenase
- (B) Oxygenase
- (C) Hydroxylase
- (D) Transferase

Retinal is reduced to retinal in intestinal mucosa by a specific retinaldehyde reductase utilising

- (A) NADPH + H+
- (B) FAD
- (C) NAD
- (D) NADH + H^+

5. Preformed Vitamin A is supplied by

- (A) Milk, fat and liver
- (B) All yellow vegetables
- (C) All yellow fruits
- (D) Leafy green vegetables

Retinol and retinal are interconverted requiring dehydrogenase or reductase in the presence of

- (A) NAD or NADP
- (B) NADH + H+
- (C) NADPH
- (D) FAD

7. Fat soluble vitamins are

- (A) Soluble in alcohol
- (B) one or more Propene units
- (C) Stored in liver
- (D) All these

8. The international unit of vitamin A is equivalent to the activity caused by

- (A) 0.3 µg of Vitamin A alcohol
- (B) 0.344 µg of Vitamin A alcohol
- (C) 0.6 µg of Vitamin A alcohol
- (D) 1.0 µg of Vitamin A alcohol

Lumirhodopsin is stable only at temperature below

- (A) -10°C
- (B) −20°C
- (C) -40°C
- (D) -50°C

10. Retinol is transported in blood bound to

- (A) Aporetinol binding protein
- (B) α_2 -Globulin
- (C) β-Globulin
- (D) Albumin

11. The normal serum concentration of 20. Vitamin D absorption is increased in vitamin A in mg/100 ml is (A) Acid pH of intestine (A) 5-10 (B) 15-60 (B) Alkaline pH of intestine (C) 100-150 (D) 0-5 (C) Impaired fat absorption (D) Contents of diet 12. One manifestation of vitamin A deficiency 21. The most potent Vitamin D metabolite is (A) Painful joints (A) 25-Hydroxycholecalciferol (B) Night blindness (B) 1,25-Dihydroxycholecalciferol (C) Loss of hair (C) 24, 25-Dihydroxycholecalciferol (D) 7-Dehydrocholesterol (D) Thickening of long bones 22. The normal serum concentration of 13. Deficiency of Vitamin A causes 25-hydroxycholecalciferol in ng/ml is (A) Xeropthalmia (A) 0-8(B) 60-100 (B) Hypoprothrombinemia (C) 100-150 (D) 8-55 (C) Megaloblastic anemia 23. The normal serum concentration of 1,25-(D) Pernicious anemia dihydroxycholecalciferol in pg/ml is 14. An important function of vitamin A is (A) 26-65 (B) 1-5 (A) To act as coenzyme for a few enzymes (C) 5-20 (D) 80-100 (B) To play an integral role in protein synthesis 24. The normal serum concentration of 24,25-(C) To prevent hemorrhages dihydroxycholecalciferol in ng/ml is (D) To maintain the integrity of epithelial tissue 15. Retinal is a component of (A) 8-20 (B) 25-50 (C) 1-5 (D) 60-100 (A) lodopsin (B) Rhodopsin (C) Cardiolipin (D) Glycoproteins 25. A poor source of Vitamin D is 16. Retinoic acid participates in the synthesis (A) Egg (B) Butter of (C) Milk (D) Liver (A) lodopsin (B) Rhodopsin 26. Richest source of Vitamin D is (C) Glycoprotein (D) Cardiolipin (A) Fish liver oils (B) Margarine 17. On exposure to light rhodopsin forms (C) Egg yolk (D) Butter (A) All trans-retinal (B) Cis-retinal 27. Deficiency of vitamin D causes (D) Retinoic acid (C) Retinol (A) Ricket and osteomalacia (B) Tuberculosis of bone 18. Carr-Price reaction is used to detect (C) Hypthyroidism (A) Vitamin A (B) Vitamin D (D) Skin cancer (C) Ascorbic acid (D) Vitamin E 28. One international unit (I.U) of vitamin D 19. The structure shown below is of is defined as the biological activity of (A) Cholecalciferol (A) 0.025 µg of cholecalciferol (B) 25-Hydroxycholecalciferol (B) 0.025 µg of 7-dehydrocholecalciferol (C) Ergocalciferol (C) 0.025 µg of ergosterol

(D) 0.025 µg of ergocalciferol

(D) 7-Dehydrocholesterol

VITAMINS

29.	The β-ring of 7- cleaved to form c	dehydrocholesterol holecalciferol by	is 38.	or	functional de		ions produce a real ncy of vitamin K
	(A) Infrared light(B) Dim light(C) Ultraviolet irrida(D) Light of the tube	_		(B)	Prolonged oral, therapy Total lack of red	meat	d spectrum antibiotic in the diet en leafy vegetables in
30.	Calcitriol synthes (A) Both liver and k				the diet Being a new box		, ,
	(B) Intestine		39.	Vito	amin K is found	d in	
	(C) Adipose tissue (D) Muscle				Green leafy plan	nts (B)	Meat Milk
31.	Insignificant an	nount of Vitamin E	is 40.		ction of Vitami		
	•	l (B) Sunflower seed o oil (D) Fish liver oil	il	(A) (B) (C)	Healing epithelic Protein synthesis Cell growth		
32.		copherols is destroy	red	, ,	All of these		
	(A) Commercial coo	oking	41.	(A)	a min K₂ was o i Soyabean Alfa Alfa	(B)	wheat gram Putrid fish meal
	(C) Conjugation (D) All of these		42.	_	amin synthesiz estine is	ed b	y bacterial in the
33.	with greater inta	of vitamin E is increas ke of	sed	(A) (C)	A D	(B) (D)	
	(A) Carbohydrates(B) Proteins(C) Polyunsaturated(D) Saturated fat	d fat	43.	by	dification of the acting as cofac	e blo tor fo	n posttranslational od clotting factors or the enzyme:
34.		s the requirement of		(A) (C)	Carboxylase Hydroxylase		Decarboxylase Oxidase
	(A) Iron	(B) Zinc	44.	Vito	amin K is a cofe	actor	for
35.	(C) Selenium The most imported	(D) Magnesium ant natural antioxide	ant		residue		on of glutamic acid
	(A) Vitamin D (C) Vitamin B ₁₂	(B) Vitamin E (D) Vitamin K		(C)	β-Oxidation of formation of γ-au Synthesis of trypt	mino l	outyrate
36.		ent the oxidation of	45.			s K i	in neonates may
	(A) Vitamin A (C) Vitamin K	(B) Vitamin D (D) Vitamin C		(A) (C)	Porphyria Pellagra		Jaundice Prolonged bleeding
37.		sed due to the deficier	ncy 46.		oumarol is ant		0
	of vitamin (A) A (C) E	(B) K (D) D	-30		Riboflavin Menadione	(B)	Retinol Tocopherol

(113)

47.	quantities of vitami	who are given liberal n C, the serum ascorbic	56.		Wernicke's di versed by ad		d beriberi can ing
	acid level is			(A) F		(B) Thia	
	(A) 1–1.4 μg/100 m	I		(C) F	Pyridoxine	(D) Vita	$min\ B_{12}$
	(B) 2–4 μg/100 ml		57.	The V	itamin B ₁ def	iciency co	uses
	(C) 1–10 μg/100 ml(D) 10–20 μg/100 n			(A) F	Ricket	(B) Nyc	talopia
				(C) E	Beriberi	(D) Pello	igra
48.	become deficient i	h would most likely in an individual who etely carnivorous life	58.	acid i			cid and lactic e to deficiency
	(A) Thiamin	(B) Niacin		(A) T	Thiamin Thiamin	(B) Ribo	flavin
	(C) Vitamin C	(D) Cobalamin		(C) 1	Viacin	(D) Pant	othenic acid
49.	• •	ghest concentration of	59.	Vitan	nin B ₁ coenzy	me (TPP)	is involved in
77.	ascorbic acid is fou			(A) (Oxidative decarb	ooxylation	
	(A) Liver	(B) Adrenal cortex		(B) H	Hydroxylation		
	(C) Adrenal medulla	(D) Spleen		` '	ransamination		
50.	The vitamin require	ed for the formation of		(D) (Carboxylation		
	hydroxyproline (in		60.				tion increases
	(A) Vitamin C	(B) Vitamin A			ietary require		
	(C) Vitamin D	(D) Vitamin E		(A) F	Pyridoxine Biotin	(B) Niad (D) Thia	
51.		or the conversion of p-	41				niochrome in
	hydroxyphenylp gentisate is	yruvate to homo-	01.		line solution b		nochrome in
	(A) Folacin	(B) Cobalamin			otassium perma	-	
	(C) Ascorbic acid	, ,			otassium ferricy	-	
52	• •	in conversion of folic		, ,	Potassium chlora		
J 2 ·	acid to folinic acid			(D) F	Potassium dichro	mate	
	(A) Biotin	(B) Cobalamin	62.				n the reaction
	(C) Ascorbic acid	(D) Niacin			ysed by the e	-	
53.	Ascorbic acid can re	educe			Acyl CoA synthet Acyl CoA dehydi		
	(A) 2, 6-Dibromoben:	zene			3-Hydroxy acyl C	-	
	(B) 2, 6-Diiodoxypyri				Enoyl CoA dehyd		
	(C) 2, 6-Dichloropher	nol indophenol	63.	The d	daily require	ment of	riboflavin for
	(D) 2, 4-Dinitrobenze	ne	00.		in mg is		insonaviii ioi
54.	Sterilised milk lack	s in		(A) (0–1.0	(B) 1.2-	-1 <i>.7</i>
	(A) Vitamin A	(B) Vitamin D		(C) 2	2.0–3.5	(D) 4.0-	-8.0
	(C) Vitamin C	(D) Thiamin	64.				therapy may
55.	Scurvy is caused de	ue to the deficiency of		_	e hyperbilirub	inemia w	ith deficiency
	(A) Vitamin A	(B) Vitamin D		of	Thiomin	(D) D:l	flancia
	(C) Vitamin K	(D) Vitamin C		` '	Thiamin Ascorbic acid	(B) Ribo (D) Pant	navin othenic acid

(D) 30 mg of pantothenic acid

65. Riboflavin deficiency causes 75. Pellagra occurs in population dependent (A) Cheilosis (A) Wheat (B) Rice (B) Loss of weight (D) Milk Mental deterioration (C) Maize **Dermatitis** 76. The enzymes with which nicotinamide act as coenzyme are 66. Magenta tongue is found in the deficiency of the vitamin (A) Dehydrogenases (B) Transaminases (A) Riboflavin (B) Thiamin (C) Decarboxylases (D) Carboxylases (C) Nicotinic acid (D) Pyridoxine 77. Dietary requirement of Vitamin D: 67. Corneal vascularisation is found in defi-(A) 400 I.U. (B) 1000 I.U. ciency of the vitamin: (C) 6000 I.U. (D) 700 I.U. (A) B₁ (B) B₂ 78. The Vitamin which does not contain a ring (C) B₃ (D) B₆ in the structure is 68. The pellagra preventive factor is (A) Pantothenic acid (B) Vitamin D (A) Riboflavin (B) Pantothenic acid (C) Riboflavin (D) Thiamin (C) Niacin (D) Pyridoxine 79. Pantothenic acid is a constituent of the 69. Pellagra is caused due to the deficiency coenzyme involved in (A) Decarboxylation (B) Dehydrogenation (A) Ascorbic acid (B) Pantothenic acid (D) Oxidation (C) Acetylation (C) Pyridoxine (D) Niacin 80. The precursor of CoA is 70. Niacin or nicotinic acid is a monocarbox-(A) Riboflavin (B) Pyridoxamine ylic acid derivative of (C) Thiamin (D) Pantothenate (A) Pyridine (B) Pyrimidine 81. 'Burning foot syndrome' has been (C) Flavin (D) Adenine ascribed to the deficiency of 71. Niacin is synthesized in the body from (A) Pantothenic acid (B) Thiamin (A) Tryptophan (B) Tyrosine (D) Pyridoxine (C) Cobalamin (C) Glutamate (D) Aspartate 82. Pyridoxal phosphate is central to 72. The proteins present in maize are deficient (A) Deamination (B) Amidation in Carboxylation (D) Transamination (A) Lysine (B) Threonine 83. The vitamin required as coenzyme for the (D) Tyrosine (C) Tryptophan action of transaminases is 73. Niacin is present in maize in the form of (A) Niacin (A) Niatin (B) Nicotin (B) Pantothenic acid (C) Niacytin (D) Nicyn (C) Pyridoxal phosphate 74. In the body 1 mg of niacin can be (D) Riboflavin produced from 84. Vitamin B_s deficiency may occur during (A) 60 mg of pyridoxine therapy with (B) 60 mg of tryptophan (A) Isoniazid (B) Terramycin (C) 30 mg of tryptophan (C) Sulpha drugs (D) Aspirin

85.	5. Deficiency of vitamin B ₆ may occur in		93.	The cofactor or its derivative required for		
	(A) Obese person(C) Alcoholics	(B) Thin person (D) Diabetics		the conversion of acetyl CoA to malonyl-CoA is		
86.		l index' is a reliable		(A) FAD (B) ACP (C) NAD+ (D) Biotin		
		eficiency of the vitamin	94.	A cofactor required in oxidative decarbox-		
	(A) Pyridoxal(C) Pantothenic acid	(B) Thiamin		ylation of pyruvate is		
0.7		, ,		(A) Lipoate (B) Pantothenic acid		
87.		ulsion in human infants ted to the deficiency of		(C) Biotin		
	the vitamin	, , , , , , , , , , , , , , , , , , ,		(D) Para aminobenzoic acid		
	(A) B ₁	(B) B ₂	95.	The central structure of B ₁₂ referred to as		
	(C) B ₆	(D) B ₁₂		corrin ring system consists of		
88.	Biotin is a coenzyr	-		(A) Cobalt (B) Manganese (C) Magnesium (D) Iron		
	(A) Carboxylase	(B) Hydroxylase	96.	The central heavy metal cobalt of vitamin		
	(C) Decarboxylase		200	B ₁₂ is coordinately bound to		
89.	The coenzyme required pyruvate to oxalo	uired for conversion of acetate is		(A) Cyanide group (B) Amino group		
	(A) FAD	(B) NAD		(C) Carboxyl group (D) Sulphide group		
	(C) TPP	(D) Biotin	97.	Vitamin B ₁₂ has a complex ring structure (corrin ring) consisting of four		
90.	In biotin-containin	g enzymes, the biotin		(A) Purine rings (B) Pyrimidine rings		
	is bound to the en	zyme by		(C) Pyrrole rings (D) Pteridine rings		
	is bound to the en (A) An amide linka	zyme by ge to carboxyl group of	98.	(C) Pyrrole rings (D) Pteridine rings Emperical formula of cobalamin is		
	(A) An amide linka glutamine	ige to carboxyl group of	98.	Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$		
	(A) An amide linka glutamine (B) A covalent bond	ige to carboxyl group of	98.	Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$ (B) $C_{61}H_{82}N_{12}O_{12}P.CO$		
	(A) An amide linka glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage	$_{\mathrm{lige}}$ to carboxyl group of with CO_2	98.	Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$		
	(A) An amide linka glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage	ge to carboxyl group of with CO_2 to an amino group of lysine ge to α -carboxyl group of		Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$ (B) $C_{61}H_{82}N_{12}O_{12}P.CO$ (C) $C_{61}H_{88}N_{12}O_{14}P.CO$ (D) $C_{63}H_{88}N_{14}O_{14}P.CO$		
91.	is bound to the en. (A) An amide linka glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage protein A molecule of CO	ge to carboxyl group of with CO_2 to an amino group of lysine ge to α -carboxyl group of α is captured by biotin		Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$ (B) $C_{61}H_{82}N_{12}O_{12}P.CO$ (C) $C_{61}H_{88}N_{12}O_{14}P.CO$		
91.	is bound to the en. (A) An amide linka glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage protein A molecule of CO, when it acts as coe	ge to carboxyl group of with CO ₂ to an amino group of lysine ge to α-carboxyl group of a is captured by biotin enzyme for carboxyla-		Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$ (B) $C_{61}H_{82}N_{12}O_{12}P.CO$ (C) $C_{61}H_{88}N_{12}O_{14}P.CO$ (D) $C_{63}H_{88}N_{14}O_{14}P.CO$ A deficiency of vitamin B_{12} causes (A) Beri-Beri (B) Scurvy		
91.	is bound to the en. (A) An amide linka glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage protein A molecule of CO, when it acts as coe	with CO ₂ to an amino group of lysine ge to α -carboxyl group of α is captured by biotine enzyme for carboxylacarboxyl group is co-		Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$ (B) $C_{61}H_{82}N_{12}O_{12}P.CO$ (C) $C_{61}H_{88}N_{12}O_{14}P.CO$ (D) $C_{63}H_{88}N_{14}O_{14}P.CO$ A deficiency of vitamin B_{12} causes (A) Beri-Beri (B) Scurvy (C) Perniciuos anemia		
91.	is bound to the end (A) An amide linkage glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage protein A molecule of CO, when it acts as coefficient to the valently attached (A) A nitrogen (N1) of the valently attached (A) of the valently attached (A) A nitrogen (N1) of the valently attached (A) of the valently attached	with CO ₂ to an amino group of lysine ge to α -carboxyl group of is captured by biotin enzyme for carboxylacarboxyl group is coto of the biotin molecule	99.	Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$ (B) $C_{61}H_{82}N_{12}O_{12}P.CO$ (C) $C_{61}H_{88}N_{12}O_{14}P.CO$ (D) $C_{63}H_{88}N_{14}O_{14}P.CO$ A deficiency of vitamin B_{12} causes (A) Beri-Beri (B) Scurvy (C) Perniciuos anemia (D) Ricket		
91.	is bound to the end (A) An amide linkage glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage protein A molecule of CO, when it acts as coeffion reaction. The valently attached (A) A nitrogen (N1) of (B) Sulphur of thiophy	with CO ₂ to an amino group of lysine ge to α -carboxyl group of a is captured by biotine enzyme for carboxylacarboxyl group is coto of the biotin molecule the energing	99.	Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$ (B) $C_{61}H_{82}N_{12}O_{12}P.CO$ (C) $C_{61}H_{88}N_{12}O_{14}P.CO$ (D) $C_{63}H_{88}N_{14}O_{14}P.CO$ A deficiency of vitamin B_{12} causes (A) Beri-Beri (B) Scurvy (C) Perniciuos anemia		
91.	is bound to the end (A) An amide linking glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage protein A molecule of CO, when it acts as coeffion reaction. The valently attached (A) A nitrogen (N ₁) of (B) Sulphur of thioph (C) α-Amino group of (D)	ge to carboxyl group of with CO ₂ to an amino group of lysine ge to α-carboxyl group of a is captured by biotin enzyme for carboxyla- carboxyl group is co- to of the biotin molecule mene ring of lysine	99.	Emperical formula of cobalamin is (A) $C_{63}H_{88}N_{12}O_{14}P.CO$ (B) $C_{61}H_{82}N_{12}O_{12}P.CO$ (C) $C_{61}H_{88}N_{12}O_{14}P.CO$ (D) $C_{63}H_{88}N_{14}O_{14}P.CO$ A deficiency of vitamin B_{12} causes (A) Beri-Beri (B) Scurvy (C) Perniciuos anemia (D) Ricket Vitamin B_{12} deficiency can be diagnosed by urinary excretion of (A) Pyruvate (B) Methylmalonate		
	is bound to the end (A) An amide linking glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage protein A molecule of CO when it acts as coeffion reaction. The valently attached (A) A nitrogen (N ₁) of (B) Sulphur of thioph (C) α-Amino group of (D) α-Amino group of (D)	ge to carboxyl group of with CO ₂ to an amino group of lysine ge to α-carboxyl group of a is captured by biotin tenzyme for carboxyla- carboxyl group is co- to of the biotin molecule tene ring of lysine of protein	99. 100.	Emperical formula of cobalamin is (A) C ₆₃ H ₈₈ N ₁₂ O ₁₄ P.CO (B) C ₆₁ H ₈₂ N ₁₂ O ₁₂ P.CO (C) C ₆₁ H ₈₈ N ₁₂ O ₁₄ P.CO (D) C ₆₃ H ₈₈ N ₁₄ O ₁₄ P.CO A deficiency of vitamin B ₁₂ causes (A) Beri-Beri (B) Scurvy (C) Perniciuos anemia (D) Ricket Vitamin B ₁₂ deficiency can be diagnosed by urinary excretion of (A) Pyruvate (B) Methylmalonate (C) Malate (D) Lactate		
91.	is bound to the en. (A) An amide linkal glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage (D) An amide linkage protein A molecule of CO, when it acts as coetion reaction. The valently attached (A) A nitrogen (N ₁) of (B) Sulphur of thioph (C) α-Amino group of (D) α-Amino group of deficiency of	with CO ₂ to an amino group of lysine ge to α-carboxyl group of a is captured by biotin enzyme for carboxylacarboxyl group is coto of the biotin molecule tene ring of lysine of protein raw eggs can cause	99. 100.	Emperical formula of cobalamin is (A) C ₆₃ H ₈₈ N ₁₂ O ₁₄ P.CO (B) C ₆₁ H ₈₂ N ₁₂ O ₁₂ P.CO (C) C ₆₁ H ₈₈ N ₁₂ O ₁₄ P.CO (D) C ₆₃ H ₈₈ N ₁₄ O ₁₄ P.CO A deficiency of vitamin B ₁₂ causes (A) Beri-Beri (B) Scurvy (C) Perniciuos anemia (D) Ricket Vitamin B ₁₂ deficiency can be diagnosed by urinary excretion of (A) Pyruvate (B) Methylmalonate (C) Malate (D) Lactate Subacute combined degeneration of cord		
	is bound to the end (A) An amide linking glutamine (B) A covalent bond (C) An amide linkage (D) An amide linkage (D) An amide linkage protein A molecule of CO when it acts as coeffion reaction. The valently attached (A) A nitrogen (N1) of (B) Sulphur of thioph (C) α-Amino group of (D) α-Amino	ge to carboxyl group of with CO ₂ to an amino group of lysine ge to α-carboxyl group of a is captured by biotin tenzyme for carboxyla- carboxyl group is co- to of the biotin molecule tene ring of lysine of protein	99. 100.	Emperical formula of cobalamin is (A) C ₆₃ H ₈₈ N ₁₂ O ₁₄ P.CO (B) C ₆₁ H ₈₂ N ₁₂ O ₁₂ P.CO (C) C ₆₁ H ₈₈ N ₁₂ O ₁₄ P.CO (D) C ₆₃ H ₈₈ N ₁₄ O ₁₄ P.CO A deficiency of vitamin B ₁₂ causes (A) Beri-Beri (B) Scurvy (C) Perniciuos anemia (D) Ricket Vitamin B ₁₂ deficiency can be diagnosed by urinary excretion of (A) Pyruvate (B) Methylmalonate (C) Malate (D) Lactate		

VITAMINS (117)

102. Vitamin required for metabolism of diols Thiamin deficiency includes e.g. conversion of ethylene glycol to (A) Mental depression (B) Fatigue acetaldehyde is (C) Beriberi (D) All of these (A) Thiamin (B) Cobalamin 111. Thiamin diphosphate is required for (D) Folic acid (C) Pyridoxine oxidative decarboxylation of 103. Both folic acid and methyl cobalamin (A) α -Keto acids (B) α -Amino acids (vitamin B₁₂) are required in (D) All of these (C) Fatty acids (A) Deamination of serine 112. Loss of thiamin can be decreased by using Deamination of threonine Unpolished rice (C) Conversion of pyridoxal phosphate to pyridoxamine phosphate Parboiled rice (B) (D) Methylation of homocystein to methionine Whole wheat flour All of these 104. Folic acid or folate consists of the Base pteridine, p-amino benzoic acid and 113. Daily requirement of thiamin is asparate (A) 0.1 mg/1,000 Calories Base purine, p-amino benzoic acid and (B) 0.5 mg/1,000 Calories glutamate (C) 0.8 mg/1,000 Calories Base pteridine, p-amino benzoic acid and (D) 1.0 mg/1,000 Calories glutamate (D) Base purine, p-hydroxy benzoic acid and 114. Thiamin requirement is greater in glutamate (A) Non-vegetarians (B) Alcoholics 105. Folate as a coenzyme is involved in the transfer and utilization of Pregnant women (D) Both B and C (A) Amino group (B) Hydroxyl group 115. People consuming polished rice as their Single carbon moiety (C) staple food are prone to (D) Amido group (A) Beriberi (B) Pellagra 106. Folic acid deficiency can be diagnosed by (C) Both (A) and (B) (D) None of these increased urinary excretion of 116. Riboflavin is heat stable in (A) Methylmalonate (B) Figlu (A) Acidic medium (B) Alkaline medium (C) Cystathionine (D) Creatinine (C) Neutral medium (D) Both (A) and (C) 107. Sulpha drugs interfere with bacterial 117. FAD is a coenzyme for synthesis of (A) Succinate dehydrogenase (A) Lipoate (B) Vitamin E Glycerol-3-phosphate dehydrogenase (C) Tetrahydrofolate (D) Ascorbic acid (C) Sphingosine reductase 108. Folate deficiency causes (D) All of these (A) Microcytic anemia 118. Riboflavin deficiency can cause (B) Hemolytic anemia (A) Peripheral neuritis (B) Diarrhoea (C) Iron deficiency anemia (C) Angular stomatitis (D) None of these (D) Megaloblastic anemia 119. Pellagra preventing factor is 109. Thiamin is heat stable in

(A) Acidic medium

(C) Both (A) and (B) (D) None of these

(B) Alkaline medium

(A) Thiamin

(C) Niacin

(B) Riboflavin

(D) Pyridoxine

120. Nigcin contains a 130. Sulphydryl group of coenzyme a is contributed by (A) Sulphydryl group (B) Carboxyl group (C) Amide group (D) All of these (A) β-Alanine (B) β-Aminoisobutyric acid 121. NADP is required as a coenzyme in (C) Methionine (A) Glycolysis (B) Citric acid cycle (D) Thioethanolamine (C) HMP shunt (D) Gluconeogenesis 131. Coenzyme A contains a nitrogenous base 122. NAD is required as a coenzyme for which is (A) Malate dehydrogenase (A) Adenine (B) Guanine Succinate dehydrogenase (C) Choline (D) Ethanolamine (C) Glucose-6-phosphate dehydrogenase (D) HMG CoA reductae 132. The following is required for the formation of coenyzme A: 123. NAD is required as a conenzyme in (A) ATP (A) Citric acid cycle (B) GTP (B) HMP shunt (D) None of these (C) CTP (C) β-Oxidation of fatty acids 133. Coenzyme A is required for catabolism of (D) Both (A) and (C) (B) Isoleucine (A) Leucine 124. Niacin can be synthesised in human (C) Valine (D) All of these beings from 134. Deficiency of pantothenic acid in human (A) Histidine (B) Phenylalanine beings can affect (C) Tyrosine (D) Tryptophan (B) Digestive system (A) Nervous system 125. Daily requirement of niacin is (C) Both (A) and (B) (D) None of these (A) 5 mg (B) 10 mg 135. Pyridoxal phosphate is a coenzyme for (C) 20 mg (D) 30 mg (A) Glutamate oxaloacetate transaminase 126. Niacin deficiency is common in people whose staple food is (B) Glutamate pyruvate transaminase (A) Wheat (C) Tyrosine transaminase (B) Polished rice (D) All of these (C) Maize and /or sorghum 136. Pyridoxal phosphate is required as a (D) None of these coenzyme in 127. In pellagra, dermatitis usually affects (A) Transamination (B) Transulphuration (A) Exposed parts of body (C) Desulphydration (D) All of these (B) Covered parts of body 137. Pyridoxal phosphate is a coenzyme for (C) Trunk only (A) Glycogen synthetase (D) All parts of the body (B) Phosphorylase 128. Niacin deficiency can occur in (C) Both (A) and (B) (A) Hartnup disease (B) Phenylketonuria (D) None of these (C) Alkaptonuria (D) None of these 138. Pyridoxine deficiency can be diagnosed 129. Pantothenic acid contains an amino acid by measuring urinary excretion of which is (A) Pyruvic acid (B) Oxaloacetic acid (A) Aspartic acid (B) Glutamic acid (C) Xanthurenic acid (D) None of these (C) B-Alanine (D) β-Aminoisobutyric acid

VITAMINS (119

139. Pyridoxine deficiency can be diagnosed by measuring the urinary excretion of xanthurenic acid following a test dose of

- (A) Glycine
- (B) Histidine
- (C) Tryptophan
- (D) Pyridoxine

140. Pyridoxine requirement depends upon the intake of

- (A) Carbohydrates
- (B) Proteins
- (C) Fats
- (D) None of these

141. Anti-egg white injury factor is

- (A) Pyridoxine
- (B) Biton
- (C) Thiamin
- (D) Liponic acid

142. When eggs are cooked

- (A) Biotin is destroyed but avidin remains unaffected
- (B) Avidin is inactivated but biotin remains unaffected
- (C) Both avidin and biotin are inactivated
- (D) Both avidin and biotin remain unaffected

143. Biotin is required as a coenzyme by

- (A) Anaerobic dehydrogenases
- (B) Decarboxylases
- (C) Aerobic dehydrogenases
- (D) Carboxylases

144. Biotin is a coenzyme for

- (A) Pyruvate carboxylase
- (B) Acetyl CoA carboxylase
- (C) Propionyl CoA carboxylase
- (D) All of these

145. Lipoic acid is a conenzyme for

- (A) Pyruvate dehydrogenase
- (B) α-Ketoglutarate dehydrogenae
- (C) Both (A) and (B)
- (D) None of these

146. Chemically, lipoic acid is

- (A) Saturated fatty acid
- (B) Unsaturated fatty acid
- (C) Amino acid
- Sulphur containing fatty acid

147. Folic acid contains

- (A) Pteridine
- p-Amino benzoic acid
- Glutamic acid
- (D) All of these

148. Conversion of folate into tetrahydrofolate requires

- (A) NADH
- (B) NADPH
- (C) FMNH₂
- (D) FADH₂

149. Riboflavin deficiency symptoms are

- (A) Glossitis
- (B) stomatis
- (C) Vomitting
- (D) Both (A) and (B)

150. Vitamin B₁₂ forms coenzymes known as

- (A) Cobamide
- (B) Transcobalamin I
- (C) Transcobalamin II (D) Both (B) and (C)

151. Methylcobalamin is required for formation of

- (A) Serin from glycine
- Glycine from serine
- (C) Methionine from homocysteine
- (D) All of these

152. Absorption of Vitamin B₁₂ requires the presence of

- (A) Pepsin
- (B) Hydrochloric acid
- (C) Intrinsic factor
- (D) Boh (B) and (C)

153. Intrinsic factor is chemically a

- Protein
- (B) Glycoprotein
- (C) Mucopolysaccaride
- (D) Peptide

154. Chemically, Extrinsic Factor of Castle is a

- (A) Mucoprotein
- (B) Glycoprotein
- Mucopolysaccharide
- (D) Cyanocobalaminm

155. Vitamin B₁₂ is

- (A) Not stored in the body
- (B) Stored in bone marrow
- (C) Stored in liver
- (D) Stored in RE cells

156.	Vitai	mın B ₁₂ is trans	ported in	blood by	105.	Det	ticiency of vitam	ıın C	causes
	(A)	Albumin	(B) Transc	ortin		(A)	Beriberi		
	(C)	Transcobalamin I	(D) Transc	obalamin II		(B)	Pellagra		
157	Vitar	min B ₁₂ is synth	esized hy	,		(C)	Pernicious anaem	ia	
137.						(D)	Scurvy		
	. ,	•	(B) Plants (D) Both (A)	•	166.	An	early diagnosis	of v	itamin C deficiency
		•					be made by		
158.		iency of vitamir	n B ₁₂ can o	ccur because		(A)	Measuring plasm	a asc	corbic acid
	of	5 1	(·. · r				Measuring urinar		
		Decreased intake		3 ₁₂		(C)	Ascorbic acid satu	uratio	on test
		Atrophy of gastric				(D)	All of these		
		Intestinal malabso All of these	rplion		167.	Dai	ily requirement	of v	ritamin C in adult
						_	ıbout .		
159.		ciency of vitamir	ı B ₁₂ can be	e diagonised		(A)	100 mg	(B)	25 mg
	by	C D				(C)	70 mg	(D)	100 mg
		Carr-Price reaction	1		168.	The	vitamin havii	ng f	the highest daily
		Ames assay Watson-Schwartz	tast				juirement amon		
		Schilling test	1031			(A)	Thiamin	(B)	Ribovflavin
1/0		Ü		1 . 1 . 1		(C)	Pyridoxine	(D)	Ascorbic acid
100.		tyrectomy lea emia within a f		gaiobiastic	169.	And	aemia can occui	r du	e to the deficiency
	(A)		(B) Weeks				all the following		
		Months	(D) Years	S		(A)	Thiamin	(B)	Pyridoxine
	` '					(C)	Folic acid	(D)	Cyanocobalamin
161.		orbic acid is requestions to the contract of t		nthesise all	170.	Δ.	vitamin which co	an l	be synthesized by
		Collagen	(B) Bile ac	side.	., .,		man beings is		
		•	(D) Epiner			(A)	Thiamin	(B)	Niacin
		. •					Folic acid		Cyanocobalamin
162.		ımin C enhaı orption of	nces the	intestinal	171	Lak	oratory diagr	nosi	is of vitamin \mathbf{B}_1
		Potassium	(B) lodine		17 11				by measuring the
		Iron	(D) None				nary excretion c		,
1/0	` '					(A)	Xanthurenic acid		
103.		min C activity is	s present	ın		(B)	Formiminoglutami	c aci	id
	, ,	D-Ascorbic acid	• 1			(C)	Methylmalonic ac	id	
		D-Dehydroascorbi L-Ascorbic acid	c acid			(D)	Homogentisic acid	d .	
	, ,	Both A and B			172.	The	molecule of vite	ami	n A, contains
	` '		16 .1			(A)	Benzene ring	(B)	β-lonone ring
164.		min C is require		synthesis of		(C)	β-Carotene ring		None of these
		Bile acids from ch			173.	Dro	cursor of Vitam		
		Bile salts from bile			170.				
		Vitamin D from ch All of these	oiesterol				α-Carotene γ-Carotene		β-Carotene All of these
	(D)	All Of Illese				101	γ-Curolette	(1)	VII OI IIIESE

(C) NADP

(D) NADPH

174. Two molecules of vitamin A can be formed 183. Retinol isomerase is present in from 1 molecule of (A) Retina (B) Liver (A) α -Carotene (B) β-Carotene (C) Both (A) and (B) (D) None of these (D) All of these (C) γ-Carotene 184. Anti-oxidant activity is present in 175. Conversion of β-carotene into retinal (A) β-Carotene (B) Retinol requires the presence of (D) All of these (C) Retinoic acid (A) β-Carotene dioxygenase 185. One international Unit of vitamin A is the (B) Bile salts activity present in (C) Molecular oxygen (A) $0.3 \mu g$ of β -Carotene (D) All of these (B) 0.3 μg of retinol (C) 0.6 µg of retinoic acid 176. Conversion of retinal into ritonal requires the presence of (D) All of these (A) NADH (B) NADPH 186. Daily requirement of vitamin A in an adult (C) FADH₂ (D) Lipoic acid man can be expressed as (A) 400 IU (B) 1,000 IU 177. Retinal is converted into retinoic acid in (C) 5,000 IU (D) 10,000 IU the presence of (A) Retinal oxidase (B) Retinal carboxylase 187. Vitamin B, includes (C) Retinene reductase (D) Spontaneously (A) Pyridoxal (B) Pyridoxamine (C) Pyridoxine (D) All of these 178. Vitamin A absorbed in intestine is released into 188. An early effect of vitamin a deficiency is (A) Portal circulation (B) Lacteals (A) Xerophthalmia (C) Both (A) and (B) (D) None of these (B) Keratomalacia (C) Prolonged dark adaptation time 179. Vitamin A is stored in the body in Follicular hyperkeratosis (A) Liver 189. Nyctalopia is (B) Adipose tissue (C) Reticuloendothelial cells (A) Drying of eyes (D) All of these Destruction of cornea (C) Blindness 180. Rhodopsin contains opsin and (D) Inability to see in dimlight (A) 11-cis-retinal (B) 11-trans-retinal 190. Rod cells possess a trans-membrane (C) All-cis-retinal (D) All trans-retinal protein which is 181. When light falls on rod cells (A) Adenylate cyclase (B) Transducin (A) All-cis-retinal is converted into all-trans-retinal (C) Rhodopsin (D) B as well as C (B) 11-cis-retinal is converted into 11-trans-retinal 191. Provitamins A include (C) 11-trans-retinal is converted into all-trans-(A) Retinal (B) Retionic acid (C) Carotenes (D) All of these (D) 11-cis-retinal is converted into all-trans-retinal 192. Retinoic acid can 182. Conversion of all-trans-retinal into all-(A) Act as a photo receptor trans-retinol requires (B) Support growth and differentiation (A) NAD (B) NADH

(C) Act as an anti-oxidant

(D) None of these

193. Prosthetic group in cone cell phototrecep-202. Calcitriol inhibits the conversion of tors is Cholesterol into 7-dehydrocholesterol (A) lodine (B) Opsin Cholecalciferol into 1-hydroxycholecalciferol (D) all-trans-retinal (C) 11-cis-retinal Cholecalciferol into 25-hydroxycholecalcifer-194. Retinoic acid is involved in the synthesis (D) 25-Hydroxycholecalciferol into 1, 25-dihydroxycholecalciferol (A) Rhodopsin (B) Iodopsin (C) Porphyrinopsin (D) Glycoproteins 203. Bowlegs and knock-knees can occur in (A) Rickets (B) Osteomalacia 195 Transducin is a Both A and B (D) Hypervitaminosis D Signal transducer (B) Stimulatory G-protein (D) All of these (C) Trimer Calcification of soft tissues can occur in 204. 196. Provitamin D₃ is Osteomalacia (B) **Rickets** (A) Cholecalciferol Hypervitaminosis D (B) Ergosterol None of these (C) 7-Dehydrocholesterol (D) Ergocaliferol 205. Levels of serum calcium and inorganic phosphorus are increased in 197. Ergosterol is found in (A) Animals (A) Hypervitaminosis D (B) Plants Hypoparathyroidism (D) All of these Bacteria (C) Hypovitaminosis D 198. A provitamin D synthesized in human None of these beings is (A) Ergosterol 206. Requirement of vitamin E increases with the increasing intake of (B) 7-Dehydrocholesterol (C) Cholecalciferol (A) Calories (B) Proteins (D) 25-Hydroxycholecalciferol **PUFA** (D) Cholesterol (C)199. 25-Hydroxylation of vitamin D occurs in 207. In human beings, vitamin E prevents (A) Skin (B) Liver (A) Sterility (C) Kidneys (D) Intestinal mucosa Hepatic necrosis 200. Tubular reabsorption of calcium is Muscular dystrophy increased by (D) None of these (A) Cholecalciferol 208. Vitamin E protects 25-Hydroxycholecalciferol (A) Polyunsaturated fatty acids against (C) Calcitriol aperoxidation All of these Vitamin A and carotenes against oxidation 201. Parathormone is required for the conver-Lung tissue against atmospheric pollutants sion of (D) All of these Cholecalciferol into 1-hydroxycholecalciferol 209. Intestinal bacteria can synthesise Cholecalciferol into 25-hydroxycholecalcifer-(A) Phyllogquinone (B) Farnoquinone 25-Hydroxycholecalciferol into calcitriol Both (A) and (B) (D) Menadione (D) Cholesterol into 7-dehydrocholesterol

210.	A water soluble fo	orm of vitamin K is	220.	The performed Vitamin A is supplied by
	(A) Phylloquinone(C) Menadione	(B) Farnoquinone(D) None of these		foods such as (A) Butter (B) Eggs (C) Fish liver oil (D) All of these
211.	Prothrombin time	is prolonged in	001	, ,
	(A) Vitamin K deficie(B) Liver damage(C) Both (A) and (B)	,		The non-protein part of rhodopsin is (A) Retinal (B) Retinal (C) Carotene (D) Repsin
	(D) None of these		222.	Lumirhodopsin is stable only at a temperature below
212.	A synthetic form of	of vitamin K is		(A) -35°C (B) -40°C
	• •	(B) Farnoquinone(D) None of these		(C) -45°C (D) -50°C
213.	Retinal is reduced	to retinol by retinene	223	The normal concentration of vitamin A in blood in I.V/dl:
	reductase in prese	ence of the coenzyme		(A) 20–55 (B) 24–60
	(A) NAD+	(B) NADP+		(C) 30–65 (D) 35–70
	(C) NADH + H+	(D) NADPH + H+	224.	Continued intake of excessive amounts of
214.		n ester with higher fatty		vitamin A especially in children produces
	acids in the			(A) Irritability (B) Anorexia
		(B) Kidney		(C) Headache (D) All of these
	(C) Lung	(D) All of these	225.	Vitamin D ₂ is also said to be
215.	retinol attached to			(A) Activated ergosterol(B) Fergocalciferol
	(A) α_1 -globulin			(C) Viosterol
	(C) β-globulin	(D) γ-globulin		(D) All of these
216.	Carotenes are tra	nsported with the	226.	The poor sources of vitamin D:
	(A) Minerals	(B) Proteins		(A) Eggs (B) Butter
	(C) Lipids	(D) Lipoproteins		(C) Milk (D) Liver
217.	The drugs that f pyridoxal are	form complexes with	227.	The activity of tocopherols is destroyed by
	• •	(B) Penicillamine (D) Both (A) and (B)		(A) Oxidation (B) Reduction (C) Conjugation (D) All of these
218.	In the blood the	e vitamin esters are	228	Some tocopherols are
	attached to			(A) Terpenoid in structure
	(A) α₁-lipoproteins(C) β-lipoproteins	(B) α_2 -lipoproteins (D) γ -lipoproteins		(B) Dional in structure (C) Isoprenoid in structure
219.		f Vitamin A in the form		(D) Farnesyl in structure
417.	of esters is stored		229.	
	(A) 80	(B) 85		of a tocopherols are
	(C) 90	(D) 95		(A) 2 (B) 3
				(C) 4 (D) 5

230.	Vitamin E stored in (A) Mitochondria (B) Micros		The number of nutritionally essential amino acids for man is
	(A) Mitochondria (B) Micros (C) Both (A) and (B) (D) None		(A) 6 (B) 8 (C) 10 (D) 12
231.	Vitamin E protects the polytiatry acids from oxidation be oxygen in the formation of (A) Superoxide (B) Peroxi (C) Trioxide (D) All of the second of the polytic factors are provided in the polytic factors.	y molecular 241. de	Avidin is present in (A) Cow's milk (B) Raw egg (C) Green leafy vegetables
232.	The tocopherols prevent the	oxidation of	(D) Carrots
	(A) Vitamin A (B) Vitami (C) Vitamin K (D) Vitami		Marasmus is due to malnutrition of (A) Proteins
233.	Vitamin E protects enzymestruction in (A) Muscles (B) Nerve		(B) Proteins and calories(C) Proteins and vitamins(D) Proteins and minerals
004	(C) Gonads (D) All of	these 243.	Energy value in kilocalorie per gram of fat in the body is
234.	Vitamin K regulates the synthe clotting factors:	esis of blood	(A) 1 (B) 4
	(A) VII (B) IX		(C) 9 (D) 18
	(C) X (D) All of	these 244.	Which among the following is an essential amino acid for man?
235.	Ascorbic acid can reduce		(A) Alanine (B) Serine
	(A) 2, 4-dinitro benzene (B) 2, 6-Dichlorophenol Indopher		(C) Valine (D) Glutamic acid
	(C) 2, 4-dibromobenzene (D) 2, 6-dibromo benzene	245.	Under what condition to basal metabolic rate goes up?
236.	Sterilized milk is devoid of		(A) Cold environment (B) Hot environment
	(A) Vitamin A (B) Vitami (C) Vitamin C (D) Vitami	•	(C) Intake of base forming foods (D) Hypothyroidism
237.	The symptoms of scurvy are	246.	What is the major form of caloric storage
238.	 (A) Poor healing of wounds (B) Loosening of teeth (C) Anaemia (D) All of these Kwashiorkor results from		in human body? (A) ATP (B) Glycogen (C) Creatine phosphate (D) triacylglycerol
	(A) Vitamin A deficiency	247.	The phosphoprotein of milk is
	(B) Vitamin D deficiency(C) Deficiency of minerals in diet		(A) Lactalbumin (B) Lactoglobulin (C) Vitellin (D) Caein
239.		248. atty acids is	Dictary deficiency of this vitamin leads to night blindness:
	an essential fatty acid for mo		(A) Retinol (B) Niacin
	(A) Palmitic acid (B) Oleic (C) Linoleic acid (D) None		(C) Ascorbic acid (D) Cholecalciferol

(C) Maltose

(D) Xylose

(D) Pancreas

(C) Intestine

249. A non essential amino acid is not 257. Milk contains very poor amounts of (A) Absorbed in the intestines (A) Calcium (B) Phosphate (C) Iron (D) Riboflavin Required in the diet (C) Incorporated into the protein 258. Egg contains very little (D) Metabolized by the body (A) Fat 250. The deficiency of Vitamin B₁₂ leads to (B) **Proteins** (C)Carbohydrates (A) Pernicious anaemia (D) Calcium and phosphorus (B) Megablastic anaemia (C) Both (A) and (B) 259. BMR (Basal Metabolic rate) is elevated in (D) None of these (A) Hyperthyroidism (B) Undernutrition (C) Starvation (D) Hypothyroidism 251. Which among the following is a nutritionally essential amino acid for man? 260. Soyabean proteins are rich in (A) Alanine (B) Glycine (A) Lysine (B) Alanine (C) Tyrosine (D) Isoleucine (C) Glcyine (D) Aspartic acid 252. The maximum specific dynamic action of 261. Corn and gliadin are low in food stuff is exerted by (A) Lysine (B) Alanine (A) carbohydrates (B) fats (C) Glycine (D) Aspartic acid (C) proteins (D) vitamins 262. What is the disease caused by thiamine 253. The essential amino acids deficiency? must be supplied in the diet because the (A) Nycalopia (B) Scurvy organism has lost the capacity to aminate the (C) Rickets (D) Beriberi corresponding ketoacids 263. Retinol and retinol -binding protein (RBP) must be supplied in the diet because the bound with this protein: human has an impaired ability to synthesize (A) Albumin (B) Prealbumin the carbon chain of the corresponding (D) β-globulin (C) α_2 -globulin ketoacids (C) are identical in all species studied 264. Megaloblastic anemia is caused by the (D) are defined as these amino acids which deficiency of cannot be synthesized by the organism at a (A) Folic acid (B) Vitamin B₆ rate adequate to meet metabolic requirements (C) Iron (D) Protein 254. Fibre in the diet is beneficial in 265. This vitamin acts as anti-oxidant: (A) Hyper glycemia (A) Vitamin A (B) Vitamin D Hyper cholseteremia (D) Vitamin K (C) Vitamin E (C) Colon cancer 266. Calcitriol is (D) All of these (A) 1-OH-cholecalciferol 255 Sucrose intolerance leads to (B) 25-OH-cholecalciferol (A) Hyper glycemia (B) Glycosuria (C) 24, 25-diOH cholecalciferol (C) Diarrhoea (D) Hypoglycemia (D) 1, 25-diOH cholecalciferol 256. There can be intolerance with respect to 267. 1-hydroxylation of 25-OH vitamin D₃ the following sugar: takes place in (A) Glucose (B) Lactose (A) Liver (B) Kidneys

268.	place in	of vitamin D ₃ takes	279.	This abnormal metabolite may be responsible for the neurological manifestation of pernicious anemia:
	(A) Liver (C) Intestine	(B) Kidneys (D) Pancreas		(A) Taurine (B) Methyl malonic acid (C) Xantherunic acid (D) Phenyl pyruvic acid
269.	Hydroxylation of calciferol is promot	f 25-hydroxy chole- ted by	280.	The vitamin in leafy vegetables:
	•	(B) Parathyroid hormone (D) CAMP		(A) D (B) K (C) A (D) Both (B) and (C)
270.	The egg injury fact	or in raw egg white is	281.	, ,
	(A) Biotin (C) Albumin	(B) Avidin(D) Calcium salts		treatment of tuberculosis may lead to a deficiency of
271.	The following has	cyanide:		(A) Vitamin A (B) Pyridoxin (C) Folate (D) Inositol
	 (A) Vitamin B₁₂ (B) Adenyl cobamide (C) Benzimidazole co (D) Methyl cobamide 	bamide	282.	Biotin is required for the reaction of CO ₂ with (A) Water (B) Acetyl CoA
272.	The human species	can biosynthesize		(C) NH ₃
	(A) Vitamin C	(B) Vitamin B ₁₂ (D) Niacin		(D) Incorporation of carbon 6 in purine
272	(C) Thiamine	()	283.	A deficiency of folate leads to
2/3.	pigment:	this photosensitive		(A) Megaloblastic anemia (B) Aplastic anemia
	(A) Rhodopsin (C) Retinol	(B) Opsin (D) Melanin		(C) Pernicious anemia (D) Hypochromic microcytic anemia
274.	Anti xerophthalmi	c vitamin is	284.	A deficiency of Iron leads to
		(B) Vitamin B₂(D) Vitamin A		(A) Megaloblastic anemia(B) Aplastic anemia
275.	One of the following addison's disease.	ng is not a symptom of		(C) Pernicious anemia(D) Hypochromic microcytic anemia
	(A) Hypoglycemia	(B) Hyponatremia	285.	Corninoid coenzymes are coenzymes of
	(C) Hypokalemia	(D) Hypochoremia		(A) Vitamin B ₁₂ (B) Vitamin B ₆
276.	Gammaxane is an (A) Thiamine		286	(C) Vitamin B ₂ (D) Vitamin B ₁ Vitamin B ₁₂ initially binds to the proteins
	(C) Pyridoxin	(D) Inositol	200.	known as
277.	sions as it is neede	cy may lead to convul- ed for the synthesis of		(A) Transcobalamin I(B) R-Proteins(C) Transcobalamin II
	(A) GABA (C) EFA	(B) PABA (D) SAM		(D) Intrinsic factor of castle
278.	Sulpha drugs are d	antimetabolities of	287.	
	(A) Vitamin K (C) Folic acid	(B) Pyridoxin(D) Vitamin B₂		(A) Vitamin B ₁₂ (B) Glycoprotein (C) R-Proteins (D) Sigma protein

288.	Intrinsic factor of castle is		297.	Convulsive episodes occur when there is		
	(A) Vitamin B₁₂(C) R-Proteins	(B) Glycoprotein (D) Sigma protein		(A) Pyridoxine (B) Folic acid (C) Thiamine (D) Riboflavin		
289.	Pernicious means	i e				
	(A) Prolonged (C) Intermittent	(B) Dangerous(D) Idiopathic	298.	vitaminosis:		
290.		ribonucleotides to D- otides in prokaryotes		(A) A (B) K (C) D (D) E		
	requires	. ,	299.	The anti vitamin for para aminobenzoio		
	(A) 5, 6 dimethyl be(B) Thioredoxin(C) Tetra hydrobiop(D) Tetra hydrofolat		300	acid is (A) Aminopterin (B) Dicoumarol (C) Sulphonamides (D) Thiopanic acid Several pantothenic acid deficiency in		
201	,		555.	man has been reported to cause		
291.	(A) Anti egg white i (B) Rutin (C) Both (A) and (B) (D) None of these	njury factor		(A) Burning feet syndrome(B) Scurvy(C) Cataract(D) Xerophthalmia		
292.	Angular stomato	sis is due to	301.	Cholesterol is a precursor in the biogene-		
	(A) Ariboflavinoses(B) Deficiency of Vi(C) Deficiency of Vi(D) Deficiency of fo	tamin C tamin B ₁	302.	sis of (A) Vitamin A (B) Vitamin D (C) Vitamin E (D) None of these This vitamin is a potent antioxidant of		
293.	, ,	unctions of Vitamin K is		vitamin A: (A) Vitamin C (B) Vitamin E (C) Vitamin K (D) Vitamin D		
	carboxyglutame (B) Methylation of 8 (C) Carboxylation of	-adenosyl methionine	303.			
294.	Prothrombin ti	me is prolonged by	304.	The following does not have phosphorous:		
	administering (A) Vitamin K			(A) Riboflavin (B) TPP (C) NAD+ (D) COASH		
	(C) Calcium	(D) Prothrombin	305.	Convulsions and delirium could be caused		
295.	This vitamin acts	as antioxidant.		by a severe deficiency of		
	(A) Vitamin A (C) Vitamin E	(B) Vitamin D (D) Vitamin K		(A) Thiamine (B) Glutamate (C) Niacin (D) Magnesium		
296.	This is a photo-la	bile vitamin.	306.	1 9		
	(A) Thiamine (C) Niacin	(B) Riboflavin (D) Cholecalciferol		(A) Riboflavin (B) Niacin (C) Thiamine (D) Vitamin B ₁₂		

307.	In beri beri there will be accumulation of		Taurinuria may be encountered in			
	in blood. (A) Aceto acetic acid (B) β-OH butyric acid		, ,	ermicious anemic		
	(C) Pyruvic acid (D) Methyl m	, مامين مينا	(C) Pe	· ·		Folate deficiency
308.		317.				nich are specially erve functions are
	 (A) Dermatitis and diarrhea only (B) Dermatitis and dementia only (C) Diarrhea, dermatitis and dement (D) Diarrhea and elements only 	iia	(A) Th (B) Th (C) Th	iamine, niacin o iamine, folic ac iamine, riboflav iamine, pyridox	id, ch in, p	noline atothenic acid
309.	Pyridoxine deficiency leads to	318.	This is	a rich source	for	vitamin C.
	(A) Megaloblastic anemia(B) Aplastic anemia(C) Hypochromic microcytic anemia		(A) Rid (C) Eg		. ,	Milk Lemon
	(D) Permicious anemia	319.				n is involved in ansaminations:
310.	flovinosis:	in arbo		icotinamide iiamine		Pyridoxine Riboflavin
	(A) Keratomalacia (B) Bitot's spots	320.		rl malonic ac ency of	idur	ia is seen in the
	(C) Vascularisation of the cornea(D) lachrymal metaplasia			tamin B ₆ iiamine		Folic acid Vitamin B ₁₂
311.	Irradiation of foods raises the	content of 321.	Deficie	ency of Vitam	in C	leads to
	(A) Vitamin A (B) Vitamin D (C) Vitamin E (D) Vitamin K		\ /	ckets ight blindness		Scurvy All of these
312.		322.				ven, the following
	(A) Amethoptesin (B) Dicoumar (C) Pyrithoamine (D) Isoniazid	rol	(A) O	choa	(B)	synthesized DNA. Okazaki
313.	Thymine is			ornberg		Monod
	(A) Water soluble vitamin(B) Fat soluble vitamin(C) Purine base	323.	(A) Vi	erility vitamir tamin B ₁ tamin E	(B)	Vitamin B ₂ Vitamin K
314.	(D) Pyrimidine base The anti-vitamin for para amin		All the		vitaı	mins give rise to phorylated in the
	acid is			form except		
	(A) Aminopterrin (B) Dicoumar (C) INH (D) Sulphona		` '	tamin A tamin D		Vitamin B ₁ Vitamin E
315.	The sulphur-containing vitamir	ns among 325.		ular Iron, Fe,		
	the following B-Vitamin is (A) Thiamine (B) Riboflavir (C) Niacin (D) Pyridoxine	1	(B) St (C) Ex	ored in the body ored primarily in ccreted in the uri osorbed in the ir	n the ine a	s Fe ²⁺

326.	326. Humans most easily tolerate a lack of which of the following nutrients?		335.	Vitamins that function as dinucleotide derivatives include all the following except
	(A) Protein(C) Carbohydrate	(B) lodine (D) Lipid		(A) Thiamine (B) Niacin (C) Nicotinate (D) Vitamin B ₂
327.	A deficiency of vita (A) Cheliosis (C) Pernicious anemia	(B) Beriberi	336.	Methyl malonic aciduria is seen in a deficiency of
328.	In adults a severe causes	deficiency of vitamin D		(A) Vitamin B ₆ (B) Folic acid (C) Thiamine (D) Vitamin B ₁₂
	(A) Night blindness (C) Rickets	(B) Osteomalacia (D) Skin cancer	337.	What is the disease caused by thiamine deficiency? (A) Nyctalopia (B) Scurvy
329.	most likely becom who develops a co life style?	wing vitamins would e deficient in a person ompletely carnivorous	338.	(C) Rickets (D) Beriberi
	(A) Thiamine(C) Cobalamine	(B) Niacin (D) Vitamin C		(C) α-globulin (D) β-globulin
330.	regarding Vitamin		339.	Megaloblastic anemia is caused by the deficiency of (A) Folic acid (B) Vitamin B ₆
	(A) It is not an essent			(C) Iron (D) Protein
	(B) It is related to too(C) It is a component	•	340.	This vitamin acts as anti oxidant.
	(D) It is also known a	s Opsin		(A) Vitamin A (B) Vitamin D (C) Vitamin E (D) Vitamin K
331.	depends upon the	yruvate carboxylase presence of	341	Calcitriol is
	(A) Malate and Niad (B) Acetyl CoA and b	cin Diotin hiamine pyrophosphate	041.	 (A) 1-hydroxy cholecalciferol (B) 25-hydroxy cholecalciferol (C) 24, 25-dihydroxy cholecalciferol (D) 1, 25-dihydroxy cholecalciferol
332.	Pantothenic acid	is a constituent of din	342.	1-hydroxylation of 25-hydroxy Vitamin D ₃ takes place in
	(A) Acetylation(C) Dehydrogenation	(B) Decarboxylation (D) Oxidation		(A) Liver (B) Kidneys (C) Intestine (D) Pancreas
333.	Biotin is involved in types of reactions?	which of the following	343.	25-hydroxylation of Vitamin D ₃ takes place in
	(A) Hydroxylation(C) Decarboxylation	(B) Carboxylation (D) Deamination		(A) Liver (B) Kidneys (C) Intestines (D) Pancreas
334.	Which of the follo	owing vitamins is the	344.	Hydroxylation of 25-hydroxy cholecalciferol is promoted by
	(A) Riboflavin (C) Thiamine	(B) Pantothenate (D) Cobamide		(A) Cytochrome A (B) Panthyroid hormone (C) Cytochrome b (D) cAMP

345.	(A) Biotin	(B) Avidin	356.		hydrazide given in the erculosis may lead to a	
346.	(C) Albumin The following has	(D) Calcium salts cyanide:		(A) Vitamin A (C) Folate	(B) Pyridoxin (D) Inositol	
	(A) Vitamin B ₁₂		357.	Steroidal prohorn	none is	
	(B) Adenyl cobamic (C) Benzimidazole ((D) Methyl cobamic	cobamide		(A) Vitamin A (C) Vitamin D	(B) Vitamin C(D) None of these	
347	The human species can biosynthesize		358.	A deficiency of fo	late leads to	
0-17.	(A) Vitamin C (C) Thiamine	(B) Vitamin B ₁₂ (D) Niacin		(A) Megaloblastic o(B) Aplastic anemio(C) Pernicious anem	I	
348.	Retina contains this	photo sensitive pigment.		(D) Hypochromic mi		
	(A) Rhodopsin	(B) Opsin	359.	Deficiency of Iron	Deficiency of Iron leads to	
240	(C) Retinol Antixerophthalmi	(D) Malanin		(A) Megaloblastic o(B) Aplastic anemia		
347.	(A) Vitamin B ₁	(B) Vitamin B ₂ (D) Vitamin A		(C) Pernicious anem (D) Hypochromic mi	iia	
350.	One of the following is not symptom of		360.	-	mes are coenzymes of	
	Addison's disease			(A) Vitamin B ₆		
	(A) Hypoglycemia(C) Hypokalemia	(B) Hyponatremia(D) Hypochloremia	361.	(C) Vitamin B ₂ Vitamin B ₁₂ initial	ly binds to the proteins	
351.	Gammaxine is an antimetabolite of			known as		
	(A) Thiamine (C) Pyridoxin	(B) Riboflavin (D) Inositol		(A) Transcobalamin(B) R-proteins(C) Transcobalamin		
352.	Pyridoxine deficiency may lead to con- vulsions as it is needed for the synthesis of			(D) Intrinsic factor o		
			362.	Extrinsic factor of castle is		
	(A) GABA	(B) PABA		(A) Vitamin B ₁₂ (C) R-proteins		
252	IC) FEA	IDI SAM		(e) Reference	(D) Sigilia protein	
	(C) EFA	(D) SAM	363.	Intrinsic factor of		
555.	Sulpha drugs are (A) PABA	antimetabolites of (B) Pyridoxin	363.			
	Sulpha drugs are (A) PABA (C) Vitamin B ₂	antimetabolites of (B) Pyridoxin (D) Pantothenic acid	363. 364.	Intrinsic factor of (A) Vitamin B ₁₂	(B) Glycoprotein (D) Sigma protein	
	Sulpha drugs are (A) PABA (C) Vitamin B ₂ This abnormal me	antimetabolites of (B) Pyridoxin (D) Pantothenic acid tabolite may be respon-		Intrinsic factor of (A) Vitamin B ₁₂ (C) R-proteins	(B) Glycoprotein (D) Sigma protein	
	Sulpha drugs are (A) PABA (C) Vitamin B ₂ This abnormal me sible for the neurof pernicious anerola. (A) Taurine	antimetabolites of (B) Pyridoxin (D) Pantothenic acid tabolite may be respon-		Intrinsic factor of (A) Vitamin B ₁₂ (C) R-proteins Pernicious means (A) Prolonged (C) Intermittent Reduction of D-ribo	(B) Glycoprotein (D) Sigma protein (B) Dangerous	
	Sulpha drugs are (A) PABA (C) Vitamin B ₂ This abnormal me sible for the neurof pernicious aner (A) Taurine (C) Xanthurenic acid	antimetabolites of (B) Pyridoxin (D) Pantothenic acid tabolite may be respon- rological manifestation mia. (B) Methyl malonic acid	364.	Intrinsic factor of (A) Vitamin B ₁₂ (C) R-proteins Pernicious means (A) Prolonged (C) Intermittent Reduction of D-riberibonucleotides in	(B) Glycoprotein (D) Sigma protein (B) Dangerous (D) Idiopathic onucleotides to D-deoxy	

366.	Antirachitic vitamin is		376.	Cholesterol is a precursor in the biogenesis		
	(A) Vitamin A	(B) Vitamin D		of		
	(C) Vitamin E	(D) Vitamin K		(A) Vitamin A (B) Vitamin D (C) Vitamin E (D) None of these		
367.	Angular stomatitis is due to		077			
	(A) Ariboflavinosis(B) Deficiency of Vitamin C		3//.	Which of the vitamins is a potent anti- oxidant of Vitamin A?		
	(B) Deficiency of Vita(C) Deficiency of Vita			(A) Vitamin C (B) Vitamin E		
	(D) Deficiency of fold			(C) Vitamin K (D) Vitamin D		
368.	One of the main functions of Vitamin K is the cofactor for		378.	In renal rickets, the following hydroxylation of Vitamin D_3 does not take place:		
	(A) Carboxylase for t glutamate	he formation of γ-carboxy		(A) 25 (B) 1 (C) 24 (D) 7		
	(B) Methylation by S-adenosyl methionine(C) Carboxylation by biotin(D) One carbon transfer by tetra hydrofolate		379.	Which of the following does not have		
				phosphorous?		
240	•			(A) Riboflavin (B) TPP		
309.	stering	prolonged by admini-		(C) NAD+ (D) CaASH		
	(A) Vitamin K	(B) Dicoumarol	380.			
	(C) Calcium	(D) Prothrombin		following Vitamin?		
370.	This Vitamin acts a	s antioxidant:		(A) Riboflavin (B) Niacin (C) Thiamine (D) Vitamin B ₁₂		
	(A) Vitamin A	(B) Vitamin D	001	12		
	(C) Vitamin E	(D) Vitamin K	381.	In beri beri there will be accumulation of in blood.		
371.	This is photo labile			(A) Aceto acetic acid		
	(A) Thiamine	(B) Riboflavin		(B) β -hydroxy butyric acid		
	(C) Niacin	(D) Cholecalciferol		(C) Pyruvic acid		
372.	Convulsive episodes occur when there is a severe deficiency of:			(D) Methyl malonic acid		
	(A) Pyridoxine	(B) Folic acid	382.	Symptoms of pellagra are (A) Dermatitis and diarrhea only (B) Dermatitis and diarrhea only		
	(C) Thiamine	(D) Riboflavin				
373.	Metastatic calcification is seen in hypervitaminosis:			(B) Dermatitis and Dermentia only(C) Diarrhea and dermentia only		
				(D) Diarrhea, Dermatitis and dementia		
	(A) A	(B) K (D) E	383.			
074	(C) D		000.	(A) Megaloblastic anemia		
3/4.	acid is	r para amino benzoic		(B) Aplastic anemia		
	(A) Aminopterin	(B) Dicoumasol		(C) Hypochromic microcytic anemia		
	(C) Sulphanomides	(D) Thiopamic acid		(D) Pernicious anemia		
375.	Severe patothemic has been reported	acid deficiency in man to cause	384.	The significant ocular lesion in a riboflavinosis is		
	(A) Burning feet syndr			(A) Keratomalacia		
	(B) Scurvy			(B) Bitot's spots		
	(C) Cataract			(C) Vascularisation of the cornea		
	(D) Xeropththalmia			(D) Lachrynal metaplasia		

385.	An anti-vitamin fo	or folic acid is	395.	Anti ster	rility Vitam	in is	;
	(A) Aminopterin (C) Pyrithiamine	(B) Dicoumarol(D) Isoniazid		(A) Vitar (C) Vitar	1		Vitamin B ₂ Vitamin K
386.	Thiamine is		396.			cho	aracterized by the
	(A) Water-soluble vi(B) Fat soluble vitan(C) Purine base(D) Pyrimidine base	nin	397.	(A) Muse (C) Nau	ng except cular pain isea cy of thiam	(D)	Anaemia Dermatitis
387.	. , ,	or para amino benzoic	0220	(A) Beri	-	(B)	Scurvy Rickets
	(A) Aminopterin (C) INH	(B) Dicoumarol(D) Sulphanomides	398.	Deficien (A) Ricke	cy of Vitan ets		D leads to Osteomalacia
388.	The sulphur conto	aining vitamins among		(C) Xero	pthalmia	(D)	Both (A) and (B)
	(A) Thiamine (C) Niacin	(B) Riboflavin (D) Pyridoxine	399.	The vita (A) A (C) C	min that is		ful in cancer is B complex F
389.	Taurinuria may b	e encountered in	400.		A over do	` '	causes injury to
	(A) Pernicious anem(C) Pellegra	ia (B) Beriberi (D) Folate deficiency		(A) Mito (C) Lysos	chondria	(B)	Microtubules E.R
390.	required for prop	ns which are specially er nerve functions are	401.		a pro vitar lant prope		or vitamin that has ?
	(A) Thiamine, Niaci(B) Thiamin, Folic a(C) Thiamine, Ribof(D) Thiamine, Pyrida	cid, Choline avin, Pantothenic acid	402.	(C) Vitar	min C ımin requi i	(D)	Vitamin E Vitamin D for carboxylation
391.	This is a rich sour	· -		reaction (A) Vitar		(R)	Vitamin B ₆
	(A) Rice (C) Egg	(B) Milk (D) Lemon		(C) Biotin	n	(D)	Vitamin B ₁₂
392.		wing vitamin is involved	403.	Biological activity of tocopherols has been attributed in part to their action as			
	in coenzyme funct (A) Nicotinamide (C) Thiamine	ion in transaminations? (B) Pyridoxine (D) Riboflavin		(C) Provi	coagulents itamin	on tra	nsport system
393.	Methyl malonic deficiency of	aciduria is seen in a	404.		essential f		nsperi system
	(A) Vitamin B₆(C) Thiamine	(B) Folic acid(D) Vitamin B₁₂		` '	slation roxylation		Carboxylation Transamination
394.	In pernicious aner amounts of	nia, Urine contains high	405.		of the follow ory catalys		g vitamin act as a
	(A) Methyl malonic a (C) VMA	cid (B) FIGLU (D) 5 HIAA		(A) B ₂ (C) B ₁₂		(B) (D)	Pyridoxine C

406.	Metal in Vitamin B	is	416.	During deficiency of thiamine the co	ncen-
	(A) Copper			tration of the following compound	
	(C) Iron			in blood and intracellular fluid:	
407.	Whole wheat is an	excellent source of		(A) Glycogen (B) Sugar	
	(A) Vitamin D	(B) Vitamin C		(C) Amino acids (D) Pyruvic acid	
	(C) Vitamin A		417.	The conversion of carotenoids to Vit A takes place in	amin
408.		e treatment of homo-		(A) Intestine (B) Liver	
	cystinuria is	(D) D		(C) Kidney (D) Skin	
		(B) B ₅	418.	Man cannot synthesize vitamin:	
	(C) B ₁₂			(A) A (B) B	
409.		ving is not a component		(C) C (D) D	
	of coenzyme A?	(D) Ada libraria	419.	Vitamin A is required for the form	ation
	(A) Pantothenic acid(C) Acetic acid	(D) Sulfhydryl group		of a light receptor protein known a	5
				(A) Globulin (B) Lypoprotein	
410.	The most active for			(C) Chomoprotein (D) Rhodospin	
	(A) 25-Hydroxychole		420.	Excessive vitamin A in children prod	luces
	(B) 1, 25-dihydroxyc (C) 25-dihydroxyergo			(A) Irritability (B) Anorexia	
	(D) None of these	ocalcheror		(C) Headache (D) All of these	
411. The important part in the structure of		421.	Tocopherols prevent the oxidation of	of	
711.	flavoprotein is	iii iii iiie siiociole ol		(A) Vitamin A (B) Vitamin D	
	(A) Vitamin B ₆	(B) Vitamin B ₂		(C) Vitamin K (D) Vitamin C	
	(C) Vitamin B ₁		422.	Vitamin K regulates the synthesis of l	olood
412.	Vitamin essential f	for transamination is		clotting factors.	
		(B) B ₂		(A) VII (B) IX	
	(C) B ₆			(C) X (D) All of these	
413.		min K in formation of	423.	The colour of cyanomethmoglobin i	S
7101	clotting factor is th			(A) Pale yellow (B) Pink	
	(A) Post transcription			(C) Brown (D) Bright red	
	(B) Post translation		424.	Transketolase activity is affected in	
	(C) Golgi complex			(A) Bitoin deficiency(B) Pyridoxine deficiency	
	- · · · ·				
	(D) Endoplasmic retio	culum		(C) PABA deficiency	
414.	(D) Endoplasmic retion Vitamin necessary			(C) PABA deficiency(D) Thiamine deficiency	
414.		for CoA synthesis: (B) Vitamin C	425.	(D) Thiamine deficiency	cata-
414.	Vitamin necessary	for CoA synthesis:	425.	(D) Thiamine deficiency The hydrolysis of glucose-6-PO ₄ is lyzed by a phosphatase that is not f	
414. 415.	Vitamin necessary (A) Pantothenic acid (C) B ₆	(B) Vitamin C (D) B ₁₂	425.	 (D) Thiamine deficiency The hydrolysis of glucose-6-PO₄ is lyzed by a phosphatase that is not fin which of the following? 	
	Vitamin necessary (A) Pantothenic acid (C) B ₆	(B) Vitamin C (D) B ₁₂	425.	(D) Thiamine deficiency The hydrolysis of glucose-6-PO ₄ is lyzed by a phosphatase that is not f	

(134) MCQs IN BIOCHEMISTRY

426.	Vitamin K ₂ was originally isolated from	(A)	Thiamine	(B) Riboflavine

(C) Alfa alfa (D) Oysters 430. The deficiency of which one of the following vitamin causes creatinuria?

427. The following form of vitamin A is used in the visual cycle: (A) Vitamin E (B) Vitamin K (C) Vitamin A (D) Vitamin B₆ (A) Retinol (B) Retinoic acid

(D) Retinyl acetate (C) Retinaldehyde 431. A biochemical indication of vitamin B₁₂ deficiency can be obtained by measuring 428. Increased carbohydrate consumption the urinary excretion of increases the dietary requirement for

(A) Pyruvic acid (B) Riboflavine (A) Thiamine (B) Malic acid (C) Pyridoxine (D) Folic acid

(B) Putrid fishmeal

429. Increased protein intake is accompanied by an increased dietary requirement for

(A) Soyabean

(C) Folic acid

(D) Nicotininic acid

Methyl malonic acid

(D) Urocanic acid

VITAMINS 135

ANSWERS					
1. A	2. B	3. A	4. A	5. A	6. A
7. D	8. A	9. D	10. A	11. B	12.B
13. A	14. D	15. B	16. C	17. A	18. A
19. A	20. A	21.B	22. D	23. A	24. C
25. C	26. A	27. A	28. A	29. C	30. A
31. D	32. A	33. C	34. C	35. B	36. A
37. C	38. B	39. A	40. D	41. D	42. D
43. A	44. A	45. B	46. C	47. A	48. C
49. B	50. A	51. D	52. C	53. C	54. C
55. D	56. B	57. C	58. A	59. A	60. D
61.B	62. B	63. B	64. B	65. A	66.A
67. B	68. C	69. D	70. A	71. A	72. C
73. C	74. B	75. C	76. A	77. A	78. A
79. C	80. D	81. A	82. D	83. C	84. A
85. C	86. A	87. C	88. A	89. D	90. C
91. A	92. A	93. D	94. A	95. A	96. A
97. C	98. D	99. C	100. B	101.B	102. B
103. D	104. C	105. C	106. B	107. C	108. D
109. A	110. D	111. A	112. D	113.B	114. D
115. A	116. D	117. D	118. C	119. C	120. B
121. C	122. A	123. D	124. D	125. C	126. C
127. A	128. A	129. C	130. D	131. A	132. A
133. D	134. C	135. D	136. D	137. B	138. C
139. C	140. B	141. B	142. B	143. D	144. D
145. C	146. D	147. D	148. B	149. D	150. A
151. C	152. D	153. B	154. D	155. C	156. D
1 <i>57</i> . A	158. D	159. D	160. D	161. C	162. C
163. C	164. A	165. D	166. C	167. C	168. D
169. A	1 <i>7</i> 0. B	171. C	172. B	1 <i>7</i> 3. D	1 <i>7</i> 4. B
175. D	176. B	1 <i>77</i> . D	178. B	1 <i>7</i> 9. A	180. A
181. D	182. D	183. B	184. A	185. B	186. C
187. D	188. C	189. D	190. C	191. C	192. B
193. C	194. D	195. D	196. C	197. B	198. B
199. B	200. C	201. C	202. D	203. A	204. C
205. A	206. C	207. D	208. D	209. B	210. C
211. C	212. A	213. C	214. D	215. A	216. D
217. D	218. C	219. D	220. D	221. A	222. D
223. B	224. D	225. D	226. C	227. A	228. A
229. B	230. C	231.B	232. A	233. D	234. D
235. B	236. C	237. B	238. D	239. C	240. B
241.B	242. B	243. C	244. C	245. A	246. C

247. D	248. A	249. B	250. C	251. D	252. C
253. B	254. D	255. C	256. B	257. C	258. C
259. A	260. B	261. D	262. D	263.B	264. A
265. C	266. D	267. B	268. A	269. B	270. B
271. A	272. D	273. A	274. D	275. C	276. D
277. A	278. C	279. A	280. D	281. D	282. B
283. B	284. A	285. D	286. B	287. B	288. A
289. B	290. B	291. A	292. B	293. A	294. A
295. B	296. C	297. B	298. A	299. C	300. C
301. A	302. B	303.B	304. A	305. D	306. D
307. C	308. C	309. C	310. B	311. C	312. A
313. D	314. D	315. A	316. A	317. D	318. D
319. B	320. D	321. C	322. C	323. C	324. B
325. A	326. C	327. C	328. B	329. D	330. C
331.B	332. A	333. B	334. B	335. A	336. D
337. D	338. B	339. A	340. D	341. D	342. B
343. A	344. B	345.B	346. A	347. D	348. A
349. D	350. C	351. D	352. A	353. A	354. B
355. D	356. B	357. C	358. A	359. D	360. B
361.B	362. A	363. B	364. B	365. A	366. B
367. A	368. A	369. B	370. C	371.B	372. A
373.C	374. C	375. A	376. B	377. B	378. B
379. A	380. C	381. C	382. D	383. C	384. C
385. A	386. D	387. D	388. A	389. A	390. D
391. D	392. B	393. D	394. A	395. C	396. B
397. A	398. D	399. A	400. C	401.B	402. C
403. B	404. B	405. A	406. B	407. D	408. D
409. C	410. A	411.B	412. C	413.B	414. A
415. C	416. D	417. A	418. C	419. D	420. D
421. A	422. D	423. D	424. D	425. C	426. B
427. C	428. A	429. A	430. C	431. C	

EXPLANATIONS FOR THE ANSWERS

- 7. D The four fat soluble vitamins (A, D, E, K) are soluble in fats, oils and fat solvents (alcohol, acetone etc.). Their occurrence in the diet, absorption and transport are associated with fat. All the fat soluble vitamins contain one or more of isoprene units (5 carbon units). They can be stored in liver and adipose tissue.
- 40. D Vitamin A is essential to maintain healthy epithelial tissues and proper immunity. Retinol and retinoic acid functions like steroid hormones. They regulate protein synthesis and thus are involved in cell growth and differentiation. β-Carotene functions as an antioxidant and reduces the risk for heart attack, cancers etc.
- 77. A The recommended dietary allowances for vitamin D is around 400 I.U. In countries with good sunlight (like India), it is much lower. *i.e.*, 200 I.U. The good sources include fatty fish, fish liver oils, egg yolk.
- 110. D The earliest symptoms of thiamin deficiency include constipation, appetite suppression, nausea as well as mental depression, peripheral neuropathy and fatigue. Chronic thiamin deficiency leads to more severe neurological symptoms including ataxia, mental confusion and loss of eye coordination. Other clinical symptoms of prolonged thiamin deficiency are related to cardiovascular and muscular defects. The severe thiamin deficiency disease is known as Beriberi.
- 149. D Riboflavin deficiency is often seen in chronic alcoholics due to their poor diabetic habits. Symptoms associated with riboflavin deficiency include, glossitis, seborrhea, angular stomatitis, cheilosis and photophobia. Riboflavin decomposes when exposed to visible light.
- 187. D Pyridoxal, pyridoxamine and pyridoxine are collectively known as vitamin B₆. All three compounds are efficiently converted to the biologically active form of vitamin B₆, pyridoxal phosphate. This conversion is catalyzed by the ATP requiring enzyme, pyridoxal kinase.
- 217. D Isoniazid (anti-tuberculosis drug) and penicillamine (used to treat rheumatoid arthritis and cystinurias) are two drugs that complex with pyridoxal and pyridoxal phosphate resulting in a deficiency in this vitamin.

- 250. C The liver can store up to six years worth of vitamin B_{12} , hence deficiencies in this vitamin are rare. Penicious anemia is a megaloblastic anemia resulting from vitamin B_{12} deficiency that develops as a result a lack of intrinsic factor in the stomach leading to malabsorption of the vitamin.
- 291. A Biotin is also called anti-egg white injury factor because, egg white contains a protein called avidin, which combines with biotin in the intestinal tract and prevents absorption of biotin from intestines.
- 321. B Deficiency in Vitamin C leads to the disease scurvy due to the role of the vitamin in the post-translational modification of collagens. Scurvy is characterized by easily bruised skin, muscle fatigue, soft swollen gums, decreased wound healing and hemorraging, osteoporosis and gnemia.
- 357. C Vitamin D is a steroid prohormone. It is represented by steroids that occur in animals, plants and yeast. Active form of the hormone is 1, 25-dihydroxy vitamin D₃ (1, 25-(OH)₂D₃, also termed calcitriol). Calcitriol functions primarily to regulate calcium and phosphorous homeostasis.
- 398. D The main symptom of vitamin D deficiency in children is rickets and in adults is osteomalacia. Rickets is characterized by improper mineralization during the development of the bones resulting in soft bones. Osteomalacia is characterized by demineralization of previously formed bone leading to increased softness and susceptibility to fracture.

This page intentionally left blank

CHAPTER 6

ENZYMES

1.	The	compound	which	has	the	lowest
	dens	sity is				

- (A) Chylomicron
- (B) β-Lipoprotein
- (C) α-Lipoprotein
- (D) pre β-Lipoprotein

Non steroidal anti inflammatory drugs, such as aspirin act by inhibiting the activity of the enzyme:

- (A) Lipoxygenase
- (B) Cyclooxygenase
- (C) Phospholipase A₂ (D) Lipoprotein lipase

3. From arachidonate, synthesis of prostaglandins is catalysed by

- (A) Cyclooxygenase
- (B) Lipoxygenase
- (C) Thromboxane synthase
- (D) Isomerase

4. A Holoenzyme is

- (A) Functional unit
- (B) Apo enzyme
- (C) Coenzyme
- (D) All of these

Gaucher's disease is due to the deficiency of the enzyme:

- (A) α-Fucosidase
- (B) β-Galactosidase
- (C) β-Glucosidase
- (D) Sphingomyelinase

6. Neimann-Pick disease is due to the deficiency of the enzyme:

- (A) Hexosaminidase A and B
- (B) Ceramidase
- (C) Ceramide lactosidase
- (D) Sphingomyelinase

7. Krabbe's disease is due to the deficiency of the enzyme:

- (A) Ceramide lactosidase
- (B) Ceramidase
- (C) β-Galactosidase
- (D) GM1 β-Galactosidase

8. Fabry's disease is due to the deficiency of the enzyme:

- (A) Ceramide trihexosidase
- (B) Galactocerebrosidase
- (C) Phytanic acid oxidase
- (D) Sphingomyelinase

9. Farber's disease is due to the deficiency of the enzyme:

- (A) α-Galactosidase
- (B) Ceramidase
- (C) β-Glucocerebrosidase
- (D) Arylsulphatase A.

A synthetic nucleotide analogue, used in organ transplantation as a suppressor of immunologic rejection of grafts is

- (A) Theophylline
- (B) Cytarabine
- (C) 4-Hydroxypyrazolopyrimidine
- (D) 6-Mercaptopurine

(140) MCQs IN BIOCHEMISTRY

11.	(A) (B) (C)	mple of an extra Lactate dehydrog Cytochrome oxido Pancreatic lipase Hexokinase	jenase ase	enzyme is	18.	Micho Vmax reacti tion S	aelis-Menten k can be deter ion velocity at	eq rmin sub	er-Burk plot of uation, Km and led when V is the estrate concentra- rimental data are
12.		ymes, which ar n in the living c				(A) 1. (C) 1.		(B) (D)	
		Papain Apoenzymes	(B) Lysoz (D) Proer	•	19.	tion ([[S]) verses rea		ostrate concentra- n velocity (V) may
13.	An	example of ligo	ıses is			indica	ate		
		Succinate thioking				(B) C	Aichaelis-Menten Co-operative bind	ling	ics
		Fumarase Aldolase					Competitive inhibi Von-competitive ir		ion
14	An	example of lya	ses is		20.			me	giving the kinetic
	(B)	Glutamine synthe	tase			(A) -((C) +			-0.25 +0.33
		Cholinesterase Amylase			21	` '			urely competitive
		•			21.		itor of an enzy		brely compeniive
15.	reg	vation or inact ulatory enzymo alent modificat	es is acco	omplished by		(A) In	ncreases K _m with Decreases K _m with	out al	
		Tyrosine Lysine	(B) Phen (D) Serin	•			ncreases V _{max} wit Decreases V _{max} w		
16.	carl wat	enzyme which oon-carbon do ter to create a aking the bond	uble bon double k	d or remove	22.	no in enzyr repres	nhibition for me with its s	the ubs mpe	below) represents reaction of the trates, the curve titive inhibition, of
		Hydratase		•					D
	(C)	Hydrolase	(D) Ester	ase		(A) A (C) C		(B) (D)	
1 <i>7</i> .		her's 'lock an	-	nodel of the	23				ne type of enzyme:
		yme action imp			20.				ie type of enzyme.
	(A)	The active site is a that of substance					Allosteric enzyme Constitutive enzym	ne.	
	(B)	The active site is	-				Co-operative enzy		
		that of substance	•				oenzymic enzym		
	(C)	Substrates change site interaction	conformati	on prior to active	24.	A den	monstrable inc	duce	r is absent in
	(D)	The active site is substrate	s flexible	and adjusts to			•		Constitutive enzyme Co-operative enzyme

ENZYMES (141)

25. In reversible non-competitive enzyme activity inhibition

- (A) V_{max} is increased
- (B) K_m is increased
- (C) K_m is decreased
- (D) Concentration of active enzyme is reduced

In reversible non-competitive enzyme activity inhibition

- (A) Inhibitor bears structural resemblance to substrate
- (B) Inhibitor lowers the maximum velocity attainable with a given amount of enzyme
- (C) K_m is increased
- (D) K_m is decreased

27. In competitive enzyme activity inhibition

- (A) The structure of inhibitor generally resembles that of the substrate
- (B) Inhibitor decreases apparent K_m
- (C) K_m remains unaffective
- (E) Inhibitor decreases V_{max} without affecting K_m

28. In enzyme kinetics V_{max} reflects

- (A) The amount of an active enzyme
- (B) Substrate concentration
- (C) Half the substrate concentration
- (D) Enzyme substrate complex

29. In enzyme kinetics Km implies

- (A) The substrate concentration that gives one half V....
- (B) The dissocation constant for the enzyme substrate comples
- (C) Concentration of enzyme
- (D) Half of the substrate concentration required to achieve $V_{\rm max}$

30. In competitive enzyme activity inhibition

- (A) Apparent K_m is decreased
- (B) Apparent K_m is increased
- (C) V_{max} is increased
- (D) V_{max} is decreased

31. In non competitive enzyme activity inhibition, inhibitor

- (A) Increases K_m (B)
- (B) Decreases K_m
- (C) Does not effect K_m (D) Increases K_m

32. An enzyme catalyzing oxidoreduction, using oxygen as hydrogen acceptor is

- (A) Cytochrome oxidase
- (B) Lactate dehydrogenase
- (C) Malate dehydrogenase
- (D) Succinate dehydrogenase

33. The enzyme using some other substance, not oxygen as hydrogen acceptor is

- (A) Tyrosinase
- (B) Succinate dehydrogenase
- (C) Uricase
- (D) Cytochrome oxidase

34. An enzyme which uses hydrogen acceptor as substrate is

- (A) Xanthine oxidase
- (B) Aldehyde oxidase
- (C) Catalase
- (D) Tryptophan oxygenase

35. Enzyme involved in joining together two substrates is

- (A) Glutamine synthetase
- (B) Aldolase
- (C) Gunaine deaminase
- (D) Arginase

36. The pH optima of most of the enzymes is

- (A) Between 2 and 4 (B) Between 5 and 9
- (C) Between 8 and 12(D) Above 12

37. Coenzymes are

- (A) Heat stable, dialyzable, non protein organic molecules
- (B) Soluble, colloidal, protein molecules
- (C) Structural analogue of enzymes
- (D) Different forms of enzymes

38. An example of hydrogen transferring coenzyme is

- (A) CoA
- (B) NAD+
- (C) Biotin
- (D) TPP

39. An example of group transferring coenzyme is

- (A) NAD+
- (B) NADP+
- (C) FAD
- (D) CoA

40. Cocarboxylase is

- (A) Thiamine pyrophosphate
- (B) Pyridoxal phosphate
- (C) Biotin
- (D) CoA

41. A coenzyme containing non aromatic hetero ring is

(A) ATP

(B) NAD

(C) FMN

(D) Biotin

42. A coenzyme containing aromatic hetero ring is

(A) TPP

(B) Lipoic acid

(C) Coenzyme Q

(D) Biotin

43. Isoenzymes are

- (A) Chemically, immunologically and electrophoretically different forms of an enzyme
- (B) Different forms of an enzyme similar in all properties
- (C) Catalysing different reactions
- (D) Having the same quaternary structures like the enzymes

44. Isoenzymes can be characterized by

- (A) Proteins lacking enzymatic activity that are necessary for the activation of enzymes
- (B) Proteolytic enzymes activated by hydrolysis
- (C) Enzymes with identical primary structure
- (D) Similar enzymes that catalyse different reaction

45. The isoenzymes of LDH

- (A) Differ only in a single amino acid
- (B) Differ in catalytic activity
- (C) Exist in 5 forms depending on M and H monomer contents
- (D) Occur as monomers

46. The normal value of CPK in serum varies between

(A) 4-60 IU/L

(B) 60-250 IU/L

(C) 4-17 IU/L

(D) $> 350 \, \text{IU/L}$

47. Factors affecting enzyme activity:

(A) Concentration

(B) pH

(C) Temperature

(D) All of these

48. The normal serum GOT activity ranges from

(A) 3.0-15.0 IU/L

(B) 4.0-17.0 IU/L

(C) 4.0-60.0 IU/L

(D) 0.9-4.0 IU/L

49. The normal GPT activity ranges from

(A) 60.0-250.0 IU/L (B) 4.0-17.0 IU/L

(C) 3.0-15.0 IU/L

(D) 0.1-14.0 IU/L

50. The normal serum acid phosphatase activity ranges from

(A) 5.0-13.0 KA units/100 ml

(B) 1.0-5.0 KA units/100 ml

(C) 13.0-18.0 KA units/100 ml

(D) 0.2-0.8 KA units/100 ml

51. The normal serum alkaline phosphatase activity ranges from

(A) 1.0-5.0 KA units/100 ml

(B) 5.0-13.0 KA units/100 ml

(C) 0.8-2.3 KA units/100 ml

(D) 13.0-21.0 KA units/100 ml

52. In early stages of myocardial ischemia the most sensitive indicator is the measurement of the activity of

(A) CPK

(B) SGPT

(C) SGOT

(D) LDH

53. Serum acid phosphatase level increases in

- (A) Metastatic carcinoma of prostate
- (B) Myocardial infarction
- (C) Wilson's disease
- (D) Liver diseases

54. Serum alkaline phosphatase level increases in

- (A) Hypothyroidism
- (B) Carcinoma of prostate
- (C) Hyperparathyroidism
- (D) Myocardial ischemia

55. Serum lipase level increases in

(A) Paget's disease

(B) Gaucher's disease

(C) Acute pancreatitis (D) Diabetes mellitus

56. Serum ferroxidase level decreases in

(A) Gaucher's disease (B) Cirrhosis of liver

(C) Acute pancreatitis (D) Wilson's disease

ENZYMES (143)

57. The isoenzymes LDH₅ is elevated in 65. The pH optima for salivary analyse is (A) 6.6-6.8 (B) 2.0-7.5 (A) Myocardial infarction Peptic ulcer (C) 7.9 (D) 8.6 (C) Liver disease 66. The pH optima for pancreatic analyse is Infectious diseases (A) 4.0 (B) 7.1 (C) 7.9 (D) 8.6 58. On the third day of onset of acute myocardial infarction the enzyme elevated is 67. The pH optima for sucrase is (A) Serum AST (B) Serum CK (A) 5.0-7.0 (B) 5.8-6.2 (C) Serum LDH (D) Serum ALT (C) 5.4-6.0 (D) 8.6 59. LDH, and LDH, are elevated in 68. The pH optima for maltase is (A) Myocardial infarction (A) 1.0-2.0 (B) 5.2-6.0 (B) Liver disease (C) 5.8-6.2 (D) 5.4-6.0 (C) Kidney disease 69. The pH optima for lactase is (D) Brain disease (A) 1.0-2.0 (B) 5.4-6.0 60. The CK isoenzymes present in cardiac (C) 5.0-7.0 (D) 5.8-6.2 muscle is 70. The substrate for amylase is BB and MB (B) MM and MB (A) (A) Cane sugar (B) Starch (D) MB only BB only (C) Lactose (D) Ribose 61. In acute pancreatitis, the enzyme raised 71. The ion which activates salivary amylase in first five days is activity is (A) Serum amylase (A) Chloride (B) Bicarbonate (B) Serum lactic dehydrogenase (C) Sodium (D) Potassium Urinary lipase 72. The pancreatic amylase activity is in-(D) Urinary amylase creased in the presence of 62. Acute pancreatitis is characterised by (A) Hydrochloric acid (B) Bile salts (C) Thiocyanate ions (D) Calcium ions (A) Lack of synthesis of zymogen enzymes (B) Continuous release of zymogen enzymes into 73. A carbohydrate which can not be digestthe gut ed in human gut is (C) Premature activation of zymogen enzymes (A) Cellulose (B) Starch (D) Inactivation of zymogen enzymes (D) Maltose Glycogen 63. An example of functional plasma enzyme is 74. The sugar absorbed by facilitated diffusion and requiring Na independent (A) Lipoprotein lipase transporter is (B) Amylase (A) Glucose (B) Fructose (C) Aminotransferase (D) Ribose Galactose (D) Lactate dehydrogenase 75. In the intestine the rate of absorption is 64. A non-functional plasma enzyme is highest for (A) Psudocholinesterase (A) Glucose and galactose (B) Lipoprotein lipase (B) Fructose and mannose (C) Proenzyme of blood coagulation (C) Fructose and pentose (D) Lipase (D) Mannose and pentose

	Glucose absorption	i is promoted by	84.	In the glycolytic pathway, enolpyruvate
	(A) Vitamin A	(B) Thiamin		is converted to ketopyruvate by
	(C) Vitamin C	(D) Vitamin K		(A) Pyruvate kinase
<i>7</i> 7.	The harmone acting	g directly on intestinal		(B) Phosphoenolpyruvate
		ting glucose absorption		(C) Pyruvate dehydrogenase
	is			(D) Spontaneously
	(A) Insulin (C) Thyroxine	(B) Glucagon(D) Vasopressin	85.	In erythrocytes, 2, 3-biphosphoglycerate is derived from the intermediate:
78.	Given that the st	andard free energy		(A) Glyeraldehyde-3-phosphate
		e hydrolysis of ATP is		(B) 1, 3-Biphosphoglycerate
		that for the hydrolysis		(C) 3-Phosphoglycerate
		hate is –3.3 Kcal/mol, phosphorylation of		(D) 2-Phosphoglycerate
		+ ATP → Glucose 6-	26	2, 3-Biphosphoglycerate in high concen-
	Phosphate + ADP.		50.	trations, combines with hemoglobin,
	(A) -10.6 Kcal/mol	(B) -7.3 Kcal/mol		causes
	(C) -4.0 Kcal/mol	(D) +4.0 Kcal/mol		(A) Displacement of the oxyhemoglobin
79.	At low blood alucos	se concentration, brain		dissociation curve to the left
		ce up glucose. It is due		(B) Displacement of the oxyhemoglobin dissociation curve to the right
	(A) Low K _m of hexoking	nase		(C) No change in oxy hemoglobin dissociation curve
	(B) Low K _m of glucoki	nase		(D) Increased affinity for oxygen
	(C) Specificity of gluce	okinase	87.	Erythrocytes under normal conditions and
	(D) Blood brain barrie	er	02.0	microorganisms under anaerobic condi-
				tions may accumulate
80.	In the reaction bel	ow, Nu TP stands tor		nons may accombianc
80.		ow, Nu TP stands tor Glucose 6–Phosphate		(A) NADPH
80.				(A) NADPH
80.	$\textbf{NuTP + glucose} \rightarrow$			(A) NADPH (B) Pyruvate
80.	NuTP + glucose → + NuDP.	Glucose 6-Phosphate		(A) NADPH
	NuTP + glucose → + NuDP. (A) ATP (C) GTP	Glucose 6-Phosphate (B) CTP (D) UTP	00	(A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate
	NuTP + glucose → + NuDP. (A) ATP (C) GTP	(B) CTP (D) UTP n below, fructose 1,6-	88.	 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy
	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show	(B) CTP (D) UTP n below, fructose 1,6-	88.	(A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during
	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local	(B) CTP (D) UTP on below, fructose 1,6- sted at point:	88.	 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following?
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C	(B) CTP (D) UTP The below, fructose 1,6- sted at point: (B) B (D) D	88.	 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the content of	(B) CTP (D) UTP (n below, fructose 1,6- ated at point: (B) B (D) D (c) glycolic pathway,	88.	 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the sensitive to inhibite.	(B) CTP (D) UTP (n below, fructose 1,6- ated at point: (B) B (D) D (b) Be glycolic pathway, on by fluoride ions is	88.	 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase (C) Pyruvate Kinase
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the content of	(B) CTP (D) UTP In below, fructose 1,6- ated at point: (B) B (D) D Ite glycolic pathway, on by fluoride ions is (B) Aldolase		 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase (C) Pyruvate Kinase (D) Glyceraldehyde-3-phosphate dehydrogenase
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the sensitive to inhibite (A) Hexokinase (C) Enolase	(B) CTP (D) UTP In below, fructose 1,6- ated at point: (B) B (D) D Ite glycolic pathway, on by fluoride ions is (B) Aldolase (D) Pyruvate kinase	88.	 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase (C) Pyruvate Kinase (D) Glyceraldehyde-3-phosphate dehydrogenase Lineweaver - Burk double reciprocal plot
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the sensitive to inhibite (A) Hexokinase (C) Enolase In glycolytic pathway	(B) CTP (D) UTP In below, fructose 1,6- ated at point: (B) B (D) D It glycolic pathway, on by fluoride ions is (B) Aldolase (D) Pyruvate kinase ay, iodacetate inhibits		 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase (C) Pyruvate Kinase (D) Glyceraldehyde-3-phosphate dehydrogenase Lineweaver - Burk double reciprocal plot is related to
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the sensitive to inhibite (A) Hexokinase (C) Enolase In glycolytic pathwo the activity of the ending in the sensitive to the ending in the sensitive to inhibite (A) Hexokinase (C) Enolase	(B) CTP (D) UTP (E) D (E) B (D) D (E) CONTROL (CONTROL		 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase (C) Pyruvate Kinase (D) Glyceraldehyde-3-phosphate dehydrogenase Lineweaver - Burk double reciprocal plot is related to (A) Substrate concentration
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the sensitive to inhibite (A) Hexokinase (C) Enolase In glycolytic pathway the activity of the enzyme of the enzy	(B) CTP (D) UTP (E) UT		 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase (C) Pyruvate Kinase (D) Glyceraldehyde-3-phosphate dehydrogenase Lineweaver - Burk double reciprocal plot is related to (A) Substrate concentration (B) Enzyme activity
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the sensitive to inhibite (A) Hexokinase (C) Enolase In glycolytic pathwouthe activity of the enzyme of the enzyme of the sensitive to inhibite (A) Hexokinase (B) Glyceraldehyde-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	(B) CTP (D) UTP (E) D (E) B (D) D (E) CONTROL (CONTROL		 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase (C) Pyruvate Kinase (D) Glyceraldehyde-3-phosphate dehydrogenase Lineweaver - Burk double reciprocal plot is related to (A) Substrate concentration (B) Enzyme activity (C) Temperature
81.	NuTP + glucose → + NuDP. (A) ATP (C) GTP In the figures show biphosphate is local (A) A (C) C The enzyme of the sensitive to inhibite (A) Hexokinase (C) Enolase In glycolytic pathway the activity of the enzyme of the enzy	(B) CTP (D) UTP In below, fructose 1,6- ated at point: (B) B (D) D It glycolic pathway, on by fluoride ions is (B) Aldolase (D) Pyruvate kinase ay, iodacetate inhibits inzyme: Interase Interase Interphosphate dehydrogenase		 (A) NADPH (B) Pyruvate (C) Phosphoenolpyruvate (D) Lactate Enzymes leading to the high energy phosphorylation of substrates during glycolysis include which of the following? (A) Phosphoglycerate kinase (B) Enolase (C) Pyruvate Kinase (D) Glyceraldehyde-3-phosphate dehydrogenase Lineweaver - Burk double reciprocal plot is related to (A) Substrate concentration (B) Enzyme activity

ENZYMES

(D) Enolase

90.	Phosphofructokinase key enzyme in glycolysis is inhibited by	97.	Pyruvate dehydrogenase activity is inhibited by
	(A) Citrate and ATP (B) AMP (C) ADP (D) TMP		(A) Mercury (B) Zinc (C) Calcium (D) Sodium
91.	One of the enzymes regulating glycolysis is	98.	In the normal resting state of humans, most of the blood glucose burned as fuel is consumed by
	(A) Phosphofructokinase(B) Glyceraldehyde-3-phosphate dehydrogenase(C) Phosphotriose isomerase		(A) Liver (B) Adipose tissue (C) Muscle (D) Brain
	(D) Phosphohexose isomerase	99.	All the enzymes of glycolysis pathway are found in
92.	Hexokinase is inhibited in an allosteric manner by (A) Glucose-6-Phosphate (B) Glucose-1-Phosphate		 (A) Extramitochondrial soluble fraction of the cell (B) Mitochondria (C) Nucleus (D) Endoplasmic reticulum
93.	(C) Fructose-6-phosphate(D) Fructose-1, 6-biphosphateA reaction which may be considered an	100.	Most major metabolic pathways are considered mainly either anabolic or catabolic. Which of the following pathway is most correctly considered to be am-
200	isomerisation is		phibolic?
	(A) Glucose 6-Phosphate ‡*† fructose 6 phosphate		(A) Citric acid cycle (B) Gluconeogenesis (C) Lipolysis (D) Glycolysis
	(B) 3-Phosphoglycerate ‡*† 2-phosphoglycerate	101.	The enzymes of the citric acid cycle are
	(C) 2-phosphoglycerate ** phosphoenol-pyruvate		located in (A) Mitochondrial matrix
0/1	(D) Pyruvate ‡*† Lactate The net number of ATP formed per mole		(B) Extramitochondrial soluble fraction of the cell(C) Nucleus(D) Endoplasmic reticulum
74.	of glucose in anaerobic glycolysis is	102.	The initial step of the citric acid cycle is
	(A) 1 (B) 2 (C) 6 (D) 8		(A) Conversion of pyruvate to acetyl-CoA(B) Condensation of acetyl-CoA with oxaloacetate
95.	Pyruvate dehydrogenase a multienzyme complex is required for the production of (A) Acetyl-CoA		 (C) Conversion of citrate to isocitrate (D) Formation of α-ketoglutarate catalysed by isocitrate dehydrogenase
	(B) Lactate (C) Phosphoenolpyruvate (D) Enolpyruvate	103.	The substance which may be considered to play a catalytic role in citric acid cycle is (A) Oxaloacetate (B) Isocitrate
96.	Dietary deficiency of thiamin inhibits the activity of the enzyme:	104.	(C) Malate (D) Fumarate An enzyme of the citric acid cycle also found outside the mitochondria is
	(A) Pyruvate kinase(B) Pyruvate dehydrogenase(C) Phosphofructokinase		(A) Isocitrate dehydrogenase(B) Citrate synthetase(C) α-Ketoglutarate dehydrogenase

(D) Malate dehydrogenase

105.	The reaction catalysed by α -ketoglutarate dehydrogenase in the citric acid cycle	111.	Formation of succinyl-CoA from $\alpha\textsc{-}Keto-glutarate$ is inhibited by			
	requires		(A) Fluoroacetate (B) Arsenite			
	(A) NAD (B) NADP		(C) Fluoride (D) Iodoacetate			
106.	(C) ADP (D) ATP If all the enzymes, intermediates and	112.	The number of ATP molecules generated for each turn of the citric acid cycle is			
	cofactors of the citric acid cycle as well as an excess of the starting substrate acetyl-		(A) 8 (B) 12			
	CoA are present and functional in an		(C) 24 (D) 38			
	organelle free solution at the appropriate pH, which of the following factors of the citric acid cycle would prove to be rate	113.	Oxidation of one molecule of glucose yields			
	limiting?		(A) 12 ATP (B) 24 ATP			
	(A) Molecular oxygen		(C) 38 ATP (D) 38 ATP			
	(B) Half life of enzyme(C) Turnover of intermediates(D) Reduction of cofactors	114.	Which of the following intermediates of metabolism can be both a precursor and a product of glucose?			
107.	In TCA cycle, oxalosuccinate is converted		(A) Lactate (B) Pyruvate			
	to α -ketoglutarate by the enzyme:		(C) Alanine (D) Acetyl-CoA			
	(A) Fumarase(B) Isocitrate dehydrogenase	115.	Mitochondrial membrane is freely preamble to			
	(C) Aconitase (D) Succinase		(A) Pyruvate (B) Malate (C) Oxaloacetate (D) Fumarate			
108.	The enzyme -ketoglutarate dehydrogena- se in the citric acid cycle requires		The reaction of Kreb's cycle which does not require cofactor of vitamin B group is			
	(A) Lipoate (B) Folate (C) Pyridoxine (D) Inositol		(A) Citrate ‡°† isocitrate			
109.	The example of generation of a high		(B) α -Ketoglutarate \ddagger \dagger succinate			
	energy phosphate at the substrate level in the citric acid cycle is the reaction:		(C) Malate ‡*† oxaloacetate			
	(A) Isocitrate ‡³† α-Ketoglutarate		(D) Succinate ‡*† fumarate			
	(B) Succinate ‡*† o-fumarate	117.	The coenzyme not involved in the formation of acetyl-CoA from pyruvate is			
	(C) Malate ‡*† α-oxaloacetate		(A) TPP (B) Biotin			
	(D) Succinyl CoA ‡¹+ α-Succinate		(C) NAD (D) FAD			
110.	Fluoroacetate inhibits the reaction of citric	118.	A carrier molecule in the citric acid cycle is			
	acid cycle:		(A) Acetyl-CoA (B) Citrate			
	(A) Isocitrate ‡*†α-Ketoglutarate		(C) Oxaloacetate (D) Malate			
	(B) Fumarate ‡*† α-Malate	119.	A specific inhibitor for succinate dehydrogenase is			
	(C) Citrate ‡*† α-cis-aconitate		(A) Arsenine (B) Arsenite			
	(D) Succinate ‡'† α-fumarate		(C) Citrate (D) Fluoride			

- 120. The rate of citric acid cycle is controlled by the allosteric enzyme:
 - (A) Aconitase
 - (B) Fumarase
 - (C) Fumarase
 - (D) Malate dehydrogenase
- 121. In the erythrocytes, the net production of ATP molecules by the Rapport-Leubering pathway is
 - (A) 0
- (B) 2
- (C) 4
- (D) 8
- 122. The ratio that most closely approximates the number of net molecules of ATP formed per mole of glucose utilized under aerobic conditions to the net number formed under anaerobic conditions is
 - (A) 4:1
- (B) 13:1
- (C) 18:1
- (D) 24:1
- 123. The pathway of glycogen biosynthesis involves a special nucleotide of glucose. In the reaction below, NuDP stands for

NuDP Glucose + glycogen_a → NuDP + glycogen_{a+1}

- (A) ADP
- (B) GDP
- (C) UDP
- (D) CDP
- 124. Glucose 6-phosphate is converted to glucose 1-phosphate in a reaction catalysed by the enzyme phosphoglucomutase, which is
 - (A) Phosphorylated
 - (B) Dephosphorylated
 - (C) Phosphorylated-dephosphorylated
 - (D) Phosphorylated-dephosphorylatedrephosphorylated
- 125. The glycogen content of the liver is upto
 - (A) 6%
- (B) 8%
- (C) 10%
- (D) 12%
- 126. In glycogenesis a branch point in the molecule is established by the enzyme
 - (A) Amylo[$1 \rightarrow 4$][$1 \rightarrow 6$] transglucosidase
 - (B) $\alpha [1 \rightarrow 4] \alpha [1 \rightarrow 4]$ Glucan transferase
 - (C) Amylo $[1 \rightarrow 6]$ glucosidase
 - (D) Glycogen synthase

- 127. In glycogenolysis, the enzyme which transfers a trisaccharide unit from one branch to the other exposing $1 \rightarrow 6$ branch point is
 - (A) Phosphorylase
 - (B) α -[1 \rightarrow 4] \rightarrow α -[1 \rightarrow 4] \rightarrow Glucan transferase
 - (C) Amylo $[1 \rightarrow 6]$ glucosidase
 - (D) Amylo[$1 \rightarrow 4$] \rightarrow [$1 \rightarrow 6$] transglucosidase
- 128. In the synthesis of glycogen from glucose the reversible step is
 - (A) Glucose → glucose 6-phosphate
 - (B) Glucose 6-phosphate → glucose 1-phosphate
 - (C) Glucose 1-phosphate → UDP glucose
 - (D) UDP glucose → glycogen
- 129. The enzyme glucose-6-phosphatase which catalyses the conversion of glucose 6-phosphate to glucose is not found in
 - (A) Liver
- (B) Muscle
- (C) Intestine
- (D) Kidney
- 130. Allosteric activator of glycogen synthase is
 - (A) Glucose
- (B) Glucose-6-Phosphate
- (C) UTP
- (D) Glucose-1-phosphate
- 131. Action of glycogen synthase is inhibited by
 - (A) Insulin
- (B) Glucose
- (C) Mg²⁺
- (D) Cyclic AMP
- 132. The hormone activating the glycogen synthase activity is
 - (A) Insulin
- (B) Glucagon
- (C) Epinephrine
- (D) ACTH
- 133. Characteristic features of active site are
 - (A) Flexible in nature (B) Site of binding
 - (C) Acidic
- (D) Both (A) and (B)
- 134. Von Gierke's disease is characterized by the deficiency of
 - (A) Glucose-6-phosphatase
 - (B) $\alpha 1 \rightarrow 4$ Glucosidase
 - (C) $1 \rightarrow 6$ Glucosidase
 - (D) Liver phosphorylase

(148) MCQs IN BIOCHEMISTRY

135. Cori disease (Limit dextrinosis) is caused due to absence of

- (A) Branching enzyme
- Debranching enzyme
- Glycogen synthase
- Phosphorylase

136. Mc Ardle's syndrome is characterized by the absence of

- (A) Liver phosphorylase
- (B) Muscle phosphorylase
- Branching enzyme
- Debranching enzyme

137. Pompe's disease is caused due to deficiency of

- (A) Lysosomal α -1 \rightarrow 4 and 1 \rightarrow 6-glucosidase
- (B) Glucose-6-phosphatase
- (C) Glycogen synthase
- (D) Phosphofructokinase

138. Amylopectinosis is caused due to absence

- (A) Debranching enzyme
- (B) Branching enzyme
- (C) Acid maltase
- (D) Glucose-6-phosphatase

139. Her's disease is characterized by deficiency of

- (A) Muscle phosphorylase
- (B) Liver phosphorylase
- Debranching enzyme
- (D) Glycogen synthase

140. Tarui disease is characterized by the deficiency of the enzyme:

- (A) Liver phosphorylase
- (B) Muscle phosphorylase
- Muscle and erythrocyte phosphofructokinase
- Lysosomal acid maltase

141. The hexose monophosphate pathway includes the enzyme:

- (A) Maltase dehydrogenase
- (B) Hexokinase
- (C) α-Ketoglutarate dehydrogenase
- (D) Glucose-6-phosphate dehydrogenase

142. The hydrogen acceptor used in pentose phosphate pathway is

- (A) NAD
- (B) NADP
- (C) FAD
- (D) FMN

143. The enzymes of the pentose phosphate pathway are found in the

- (A) Cytosol
- (B) Mitochondria
- (C) Nucleus
- (D) Endoplasmic reticulum

144. In pentose phosphate pathway, D-ribulose-5-phosphate is converted to D-ribose-5phosphate by the enzyme:

- (A) Fumarase
- (B) Ketoisomerase
- (C) G-6-PD
- (D) Epimerase

145. The transketolase enzyme in the pentose phosphate pathway requires the B vitamin.

- Pantothenic acid (B) Thiamin
- Riboflavin
- (D) Nicotinic acid

146. Xylulose-5-phosphate serves as a donar of active glycolaldehyde, the acceptor is

- (A) Erythrose 4-phosphate
- (B) Ribose 5-phosphate
- (C) Glyceraldehyde 3-phosphate
- Sedoheptulose 7-phosphate

147. Pentose phosphate pathway is of significance because it generates

- (A) NADPH for reductive synthesis
- (B) Regenerates glucose 6-phosphate
- (C) Generates fructose 6-phosphate
- (D) Forms glyceraldehyde 3-phosphate

148. The pentose phosphate pathway protects erythrocytes against hemolysis by assisting the enzyme:

- (A) Superoxide dismutase
- (B) Catalase
- Glutathionic peroxidase
- Cytochrome oxidase

ENZYMES

(C) 5

(D) 6

149.	 Hemolytic anemia is caused by the deficiency of certain enzymes of the pentose phosphate pathway, the principal enzyme involved is 		157.	For conjugation with many enogenous and exogenous substances before elimination in urine, the uronic acid pathway provides		
	(A) Glucose-6-phosph (B) Aldolase (C) Fructose 1, 6-bisph	shosphatase	158.	(A) Active glucuronate (B) Gulonate (C) Xylulose (D) Xylitol UDP glucose is converted to UDP		
150	(D) Phosphohexose is		150.	glucurronate, a reaction catalysed by UDP		
150.	The sites for glucor	neogenesis are		glucose dehydrogenase requires		
	(A) Liver and kidney (B) Skin and pancred	as		(A) NAD+ (B) FAD (C) NADP (D) FMN		
	(C) Lung and brain(D) Intestine and lens	•	159.	Pentosuria is a rare hereditary disease is characterized by increased urinary		
151.	=	d in gluconeogenesis is		excretion of		
	(A) Pyruvate kinase(B) Pyruvate carboxy(C) Hexokinase(D) Phosphohexose is			(A) L-xylulose(B) Xylitol(C) Xylulose 5-phosphate(D) Ribose 5-phosphate		
152.	The enzyme pyrupresent in	vate carboxylase is	160.	The enzyme involved in essential pentosuria is		
	(A) Cytosol(C) Nucleus	(B) Mitochondria(D) Golgi bodies		(A) Reductase (B) Hydroxylase (C) Isomerase (D) Racemase		
153.	The enzyme pho	osphoenolpyruvate	161.	Galactose is synthesized from glucose in		
		alyses the conversion phosphoenolpyruvate		(A) Mammary gland (B) Intestine (C) Kidney (D) Adipose tissue		
	(A) ATP	(B) ADP	162.	Galactose is readily converted to glucose in		
	(C) AMP	(D) GTP		(A) Liver (B) Intestine		
154.	The enzyme gluce present in	ose 6-phosphatase is		(C) Kidney (D) Adipose tissue		
	(A) Liver (C) Adipose tissue	(B) Muscle (D) Brain	163.	Galactose 1-phosphate is converted to uridine diphosphate galactose, the reaction is catalysed by the enzyme:		
155.	required in the syn from bicarbonate of	an allosteric activator thesis of oxaloacetate and pyruvate, which is e enzyme pyruvate		 (A) Glactokinase (B) Galactose 1-phosphate uridyl transferase (C) Uridine diphospho galactose 4-epimerase (D) UDP glucose pyrophosphorylase 		
	(A) Acetyl CoA (C) Isocitrate	(B) Succinate(D) Citrate	164.	The best known cause of galactosemia is the deficiency of		
156.		molecules required to sof lactate into glucose		 (A) Galactose 1-phosphate and uridyl transferase (B) Phosphoglucomutase (C) Galactokinase 		
	(A) 2	(B) 4		(D) Lactose synthase		

(150) MCQs IN BIOCHEMISTRY

165 Conversion of fructose to sorbitol is 172. Phlorizin inhibits catalysed by the enzyme: (A) Sorbitol dehydrogenase Glycolysis (B) Aldose reductase

- (C) Fructokinase (D) Hexokinase
- 166. A specific fructokinase present in liver has a very high affinity for its substrate because
 - (A) K_m for fructose is very high
 - (B) K_m for fructose is very low
 - (C) Activity is affected by fasting
 - (D) Activity is affected by insulin
- 167. Insulin has no effect on the activity of the enzyme:
 - (A) Glycogen synthetase
 - (B) Fructokinase
 - (C) Pyruvate kinase
 - (D) Pyruvate dehydrogenase
- 168. The pathogenesis of diabetic cataract involves accumulation of
 - (A) Galactose
- (B) Mannitol
- (C) Sorbitol
- (D) Pyruvate
- 169. Hereditary fructose intolerance involves the absence of the enzyme:
 - (A) Aldalose B
 - (B) Fructokinase
 - (C) Triokinase
 - (D) Phosphotriose isomerase
- 170. Essential fructosuria is characterized by the lack of the hepatic enzyme:
 - (A) Phosphohexose isomerase
 - (B) Aldalose A
 - (C) Aldolase B
 - (D) Fructokinase
- 171. In normal individuals glycosuria occurs when the venous blood glucose concentration exceeds
 - (A) 5-6 mmol/L
 - (B) 7-8 mmol/L
 - (C) 8.5-9 mmol/L
 - (D) 9.5-10 mmol/L

- (A) Renal tubular reabsorption of glucose
- Gluconeogenesis
- Glycogenolysis

173. Renal glycosuria is characterized by

- (A) Hyperglycemia
- (B) Hyperglycemia with glycosuria
- (C) Normal blood glucose level with glycosuria
- Hyperglycemia with ketosis
- 174. Acute hemolytic anemia in person's sensitive to the Fava beans is due to the deficiency of the enzyme:
 - (A) Pyruvate dehydrogenase
 - (B) G-6-PD
 - (C) Aconitase
 - (D) Transketolase
- 175 Acute hemolytic episode after administration of antimalarial, primaquin, is due to deficiency of the enzyme:
 - (A) 6-Phosphogluconate dehydrogenase
 - (B) Glucose-6-phosphate dehydrogenase
 - (C) Epimerase
 - (D) Transketolase
- 176. The pH optima of gastric lipase is
 - (A) 3.0-6.0
- (B) 1.0-2.0
- (C) 8.0
- (D) 8.6
- 177. The optimum pH of pancreatic lipase is
 - (A) 2.0
- (B) 4.0
- (C) 6.0
- (D) 8.0
- 178. Gastric lipae is activated in the presence of
 - (A) Bile salts
- (B) Cu++
- (C) K+
- (D) Na+
- 179. An example of enzyme inhibition:
 - (A) Reversible inhibition
 - (B) Irreversible inhibition
 - Allosteric inhibition
 - (D) All of these

180.	The formation of Δ^2 acyl-CoA requires t	-trans-enoyl-CoA from the enzyme:	189.	The concentration of ketone bodies in the blood does not normally exceed
	(A) Acyl-CoA syntheto	ase		(A) 0.2 mmol/L (B) 0.4 mmol/L
	(B) Acyl-CoA dehydro	ogenase		(C) 1 mmol/L (D) 2 mmol/L
	(C) 3-Hydroxy acyl-C	_	100	In humans under normal conditions loss
	(D) Thiolase	, -	170.	of ketone bodies via urine is usually less
181.		etoacyl-CoA is splitted		than
	at the 2, 3 position	by the enzyme:		(A) 1 mg/24 hr (B) 4 mg/24 hr
	· · ·	(B) Dehydrogenase		(C) 8 mg/24 hr (D) 10 mg/24 hr
	(C) Reducatse	(D) Thiolase	191.	The structure which appears to be the only
182.		dd number of carbon CoA and a molecule of		organ to add significant quantities of ketone bodies to the blood is
	(A) Succinyl-CoA	(B) Propionyl-CoA		(A) Brain (B) Erythrocytes
	(C) Malonyl-CoA			(C) Liver (D) Skeletal muscle
183	For each of the first	7-acetyl-CoA molecules	192.	The starting material for ketogenesis is
		ation of palmitic acid,		(A) Acyl-CoA (B) Acetyl-CoA
		nergy phosphates is		(C) Acetoacetyl-CoA (D) Malonyl-CoA
	(A) 12	(B) 24	193.	Enzymes responsible for ketone body
	(C) 30	(D) 35		formation are associated mainly with the
184.	The net gain of AT	P/mol of palmitic acid		(A) Mitochondria
	on complete oxida			(B) Endoplasmic reticulum
	(A) 88	(B) 105		(C) Nucleus
	(C) 129	(D) 135		(D) Golgi apparatus
185.	ω-oxidation is no	rmally a very minor	194.	The synthesis of 3-hydroxy-3-methyl-
		ought by hydroxylase		glutaryl-CoA can occur
	enzymes involving			(A) Only in mitochondria of all mammalian tissues
	(A) Cytochrome a	(B) Cytochrome b		(B) Only in the cytosol of all mammalian tissue
	(C) Cytochrome c	(D) Cytochrome p-450		(C) In both cytosol and mitochondria
186.	α-Oxidation i.e	the removal of one		(D) In lysosomes
		rom the carboxyl end	195.	of acetoacetate from acetyl-CoA in liver,
	(A) Brain tissue	(B) Liver		the immediate precursor of aceotacetate
	(C) Adipose tissue	(D) Intestine		is (A) A
187.	In R-oxidation, the	coenzyme for acyl-CoA		(A) Acetoacetyl-CoA (B) 3-Hydroxybutyryl-CoA
	dehydrogenase is			(B) 3-Hydroxybutyryl-CoA (C) 3-Hydroxy-3-methyl-glutaryl-CoA
	(A) FMN	(B) NAD		(D) 3-Hydroxybutyrate
	(C) NADP	(D) FAD	104	, , , ,
188.	The coenzyme invo	olved in dehydrogena-	196.	
. 55.	tion of 3-hydroxy			(A) Extrahepatic tissues
	(A) FAD	(B) FMN		(B) Hepatic tissues
	(C) NAD	(D) NADP		(C) Erythrocytes (D) Mitochondria
	1 ()	1 1 · ·		ושן אוווטטווטוועווע

(152) MCQs IN BIOCHEMISTRY

$\overline{}$						
	In extra hepatic tissues, one mechanism for utilization of acetoacetate involves (A) Malonyl-CoA (B) Succinyl-CoA (C) Propionyl-CoA (D) Acetyl-CoA Ketosis reflects (A) Increased hepatic glucose liberation		The fatty acid synthase complex catalyses (A) 4 sequential enzymatic steps (B) 6 sequential enzymatic steps (C) 7 sequential enzymatic steps (D) 8 sequential enzymatic steps The main source of reducing equivalents			
199.	 (B) Increased fatty acid oxidation (C) Increased carbohydrate utilisation (D) Incresed gluconeogenesis Ketosis is associated with the disease:		 (NADPH) for lipogenesis is (A) Pentose phosphate pathway (B) Citric acid cycle (C) Glycolysis (D) Glycogenolysis 			
	(A) Nephritis(B) Diabetes mellitus(C) Edema(D) Coronary artery diseases	207.	In fatty acids synthase of both bacteria and mammals, ACP (acyl carrier protein) contain the vitamin: (A) Thiamin (B) Pyridoxine (C) Riboflavin (D) Pantothenic acid			
	The main pathway for denovo synthesis of fatty acids occur in (A) Cytosol (B) Mitochondria (C) Microsomes (D) Nucleus	208.	Carboxylation of acetyl-CoA to malonyl-CoA requires the enzyme: (A) Acetyl-CoA carboxylase (B) Pyruvate carboxylase			
201.	Chain elongation of fatty acids in mammalian liver occurs in (A) Nucleus (B) Ribosomes (C) Lysosomes (D) Microsomes	209.	 (C) Acetyl transacylase (D) Acyl CoA-synthetase The rate limiting reaction in the lipogenic pathway is 			
202.	Acetyl-CoA is the principal building block of fatty acids. It is produced within the mitochondria and does not diffuse readily into cytosol. The availability of acetyl CoA involves		(A) Acetyl-CoA carboxylase step(B) Ketoacyl synthase step(C) Ketoacyl reductase step(D) Hydratase step			
	(A) Carnitine acyl transferase(B) Pyruvate dehydrogenase(C) Citrate lyase(D) Thiolase	210.	Conversion of fatty acyl-CoA to an acyl-CoA derivative having 2 more carbon atoms involves as acetyl donar: (A) Acetyl-CoA (B) Succinyl-CoA			
203.	The synthesis of fatty acids is often termed reductive synthesis. (A) NADP+ (B) NADH (C) FADH ₂ (D) NADPH	211.	(C) Propionyl-CoA (D) Malonyl-CoA A cofactor required for the conversion of acetyl-CoA to malonyl-CoA in extramito-chondrial fatty acid synthesis is (A) Biotin (B) FMN (C) NAD (D) NADP			
204.	The protein, which is in fact a multifunctional enzyme complex in higher organism is (A) Acetyl transacylase (B) Malonyl transacylase (C) 3-Hydroxy acyl-ACP dehyratase	212.	The glycerol for fatty acid esterification in adipocytes is (A) For the most part, derived from glucose (B) Obtained primarily from phosphorylation of glycerol by glycerol kinase			

(C) Formed from gluconeogenesis

(D) Formed from glycogenolysis

(D) Fatty acid synthase

(C) 3-Hydroxy acyl-ACP dehyratase

ENZYMES

213. In the biosynthesis of triglycerides from glycerol 3-phosphate and acyl-CoA, the first intermediate formed is

- (A) 2-Monoacylglycerol
- (B) 1, 2-Diacylglycerol
- Lysophosphatidic acid
- Phosphatidic acid

214. The enzyme glycerol kinase is low activity

- (A) Liver
- (B) Kidney
- (C) Intestine
- (D) Adipose tissue

215. The common precursor in the biosynthesis of triacylglycerol and phospholipids is

- (A) 1, 2-Diacylglycerol phosphate
- (B) 1-Acylglycerol 3-phosphate
- (C) Glycerol 3-phosphate
- (D) Dihydroxyacetone phosphate

216. Synthesis of polyunsaturated fatty acids involves the enzyme systems:

- (A) Acyl transferase and hydratase
- (B) Desaturase and elongase
- (C) Ketoacyl-CoA reductase and hydratase
- Dihydroxyacetone phosphate

217. The desaturation and chain elongation system of polyunsaturated fatty acid are enhanced by

- (A) Insulin
- (B) Glucagon
- (C) Epinephrine
- (D) Thyroxine

218. Higher rate of lipogenesis is associated with

- (A) High proportion of carbohydrate in diet
- (B) Restricted caloric intake
- (C) High fat diet
- (D) Deficiency of insulin

219. Example of enzyme specificity:

- (A) Stereo specificity (B) Reaction specificity
- (C) Substrate specificity (D) All of these

220. Phospholipase C attacks the ester bond liberating 1, 2-diacylglycerol and a phosphoryl base at position

- (C) Both (A) and (B) (D) 3

Synthesis of phosphatidylinositol by transfer of inositol to CDP diacylglycerol is catalysed by the enzyme:

- CTP phosphatidate cytidyl transferase
- Phosphatidate phosphohydrolase
- CDP-diacylglycerol inositol transferase (C)
- (D) Choline kinase

222. Synthesis of sphingosine requires the cofactor

- (A) NAD
- (B) NADP
- (C) NADPH+
- (D) ATP

223. Ceramide is formed by the combination of sphingosine and

- (A) Acetyl-CoA
- (B) Acyl-CoA
- (C) Malonyl-CoA
- (D) Propionyl-CoA

224. The amino alcohol sphingosine is synthesized in

- (A) Mitochondria
- (B) Cytosol
- Nucleus
- (D) Endoplasmic reticulum

225. The output of free fatty acids from adipose tissue is reduced by

- (A) Insulin
- (B) Glucagon
- Growth hormone (D) Epinephrine

226. The principal action of insulin in adipose tissue is to inhibit the activity of the

- (A) Hormone sensitive lipoprotein lipase
- (B) Glycerol phosphate acyltransferase
- Acetyl-CoA carboxylase
- (D) Pyruvate dehydrogenase

227. In non shivering thermogenesis

- (A) Glucose is oxidized to lactate
- Fatty acids uncouple oxidative phosphoryla-
- Ethanol is formed
- (D) ATP is burned for heat production

228. Brown adipose tissue is

- (A) A prominent tissue in human
- Characterised by high content of mitochon-
- (C) Associated with high activity of ATP synthase
- (D) Characterised by low content of cytochromes

\sim							
229.	29. Fatty liver is caused due to accumulation of		238.	In the biosynthesis of cholesterol, the step which controls the rate and locus of			
	, ,	(B) Cholesterol (D) Triacylglycerol		metabolic regulation is (A) Geranyl pyrophosphate farnesyl pyrophosphate			
230.	A lipotropic factor is	s (B) Palmitic acid		 (B) Squalene → lanosterol (C) HMG CoA → mevalonate 			
	• •	(D) Vitamin C		(D) Lanosterol → 1, 4-desmethyl lanosterol			
231.	Fatty liver is also ca	used by	239.	The cyclisation of squalene in mammals results in the direct formation of the sterol			
	• •	(B) CCl₄(D) Riboflavin		(A) Cholesterol (B) Lanosterol (C) Sistosterol (D) Zymosterol			
232.	All the enzymes invo	olved in the synthesis ound in	240.	, ,			
	(A) Mitochondria(B) Golgi apparatus(C) Nucleus(D) Endoplasmic reticular	ulum and cytosol		(A) Mevalonate kinase(B) HMG-CoA synthetase(C) HMG-CoA reductase(D) Cis-prenyl transferase			
233.	The source of all the carbon atoms in cholesterol is			Cholesterol by a feed back mechanism inhibits the activity of			
	• •	(B) Bicarbonate(D) Succinyl-CoA		(A) HMG-CoA synthetase (B) HMG-CoA reductase			
234.	Two molecules of action acetoacetyl-Co	etyl-CoA condense to oA catalysed by		(C) Thilase (D) Mevalonate kinase			
	(A) Thiolase (C) Reductase	(B) Kinase (D) Isomerase	242.	The activity of HMG-CoA reductase is inhibited by			
235.	more molecule of a	ondenses with one cetyl-CoA to form		(A) A fungal inhibitor mevastatin(B) Probucol(C) Nicotinic acid			
	(A) Mevalonate(B) Acetoacetate(C) β-Hydroxybutyrate(D) 3-Hydroxy 3-methy	rl-glutaryl-CoA	243.	(D) Clofibrate Hypolipidemic drugs reduce serum cholesterol and triacylglycerol. The effect of clofibrate is attributed to			
236.	HMG-CoA is converted to mevalonate by reduction catalysed by			(A) Block in absorption from G.I.T. (B) Decrease in secretion of triacylglycerol and			
	(A) HMG-CoA synthete(B) HMG-CoA reducte(C) Mevalonate kinase	ise		cholesterol containing VLDL by liver (C) Block in the reabsorption of bile acids (D) Decreased synthesis of cholesterol			
	(D) Thiolase		244.	In biosynthesis of cholesterol triparano inhibits the activity of the enzyme:			
237.	For reduction enzym requires cofactor:	e HMG-CoA reductase		(A) Δ^{24} Reductase			
	(A) NADPH (C) NAD	(B) NADP (D) FAD		(B) Oxidosqualene-lanosterol cyclase(C) Isomerase(D) Squalene epoxidase			

ENZYMES

(155)

245. HMG-CoA reductase activity is increased 253. Defective enzyme in Hunter's syndrome by administration of the hormone: (A) α -L-iduronidase (B) Iduronate sulphatase (A) Insulin (B) Glucagon Arylsulphatase B (D) C-acetyl transferase Epinephrine (D) Glucocorticoids 254. In Hunter's syndrome 246. The principal sterol excreted in feces is (A) There is progressive corneal opacity (A) Coprostanol (B) Zymosterol Keratan sulphate is excreted in the urine (C) Lanosterol (D) Desmosterol Enzyme defective is arylsulphatase B 247. The principal rate limiting step in the Hearing loss is perceptive biosynthesis of bile acids is at the 255. An important feature of Von-Gierke's (A) 7-Hydroxylase reaction disease is (B) 12 α-Hydroxylase reaction (A) Muscle cramps (B) Cardiac failure (C) Conjugation reaction (C) Hypoglycemia (D) Respiratory alkalosis (D) Deconjugation reaction 256. The affected organ in Mc Ardle's syndrome 248. Hypercholesterolemia is found in is (A) Xanthomatosis (A) Liver (B) Kidney (B) Thyrotoxicosis (C) Liver and Heart (D) Skeletal muscle Hemolytic jaundice 257. Refsum's disease is due to deficiency of Malabsorption syndrom the enzyme: 249. Hypocholesterolemia is found in (A) Pytantate-α-oxidase (A) Thyrotoxicosis Glucocerebrosidase (C) Galactocerebrosidase Diabetes mellitus Ceramide trihexosidase (C) Obstructive jaundice (D) Nephrotic syndrome 258. An important finding in Refsum's disease 250. The major source of extracellular cholesterol for human tissue is Accumulation of ceramide trihexoside in the (A) (A) Very low density lipoprotein (B) Accumulation of phytanic acid in the blood High density lipoprotein and tissues Low density lipoprotein (C) Accumulation of gangliosides in brain and (D) Albumin spleen (D) Skin eruptions 251. Correct ordering of lipoprotein molecules from lowest to the greater density is 259. α -Galactosidase enzyme is defective in (A) LDL, IDL, VLDL, chylomicron Tay-sach's disease (B) Chylomicron, VLDL, IDL, LDL Refsum's disease (C) VLDL, IDL, LDL, chylomicron Sandhoff's disease (D) LDL, VLDL, IDL, chylomicron (D) Fabry's disease 252. In Hurler's syndrome, urine shows the 260. The hypothesis to explain enzymepresence of substrate complex formation: (A) Keratan sulphate I (A) Lock and key model

(B) Chondroitin sulphate

Keratan sulphate II

Dermatan sulphate and heparan sulphate

Induced fit theory

Proenzyme theory

Both (A) and (B)

261. An important finding in Tay-sach's disease is

- (A) Renal failure
- (B) Accumulation of gangliosides in brain and spleen
- (C) Cardiac failure
- (D) Anemia

262. The enzyme deficient in Krabbe's disease is

- (A) Hexosaminidase A (B) Arylsuphatase A
- (C) β-Galactosidase (D) α-Fucosidase

263. The enzyme ceramidase is deficient in

- (A) Farber's disease (B) Fabry's disease
- (C) Sandhoff's disease (D) Refsum's disease

264. Niemann-Pick disease is due to deficiency of the enzyme

- (A) Ceramidase
- (B) Glucocerebrosidase
- (C) Galactocerebrosidase
- (D) Sphingomyelinase

265. Wolman's disease is due to deficiency of

- (A) Cholesteryl ester hydrolase
- (B) Hexosaminidase A
- (C) α-Fucosidase
- (D) Arylsulphatase A

266. The enzyme deficient in Sandhoff's disease is

- (A) α-Fucosidase
- (B) Hexosaminidase A and B
- (C) β-Galactosidase
- (D) β-Glucosidase

267. Jamaican vomiting sickness is due to inactivation of the enzyme

- (A) Pyruvate carboxylase
- (B) Acyl-Co-A synthetase
- (C) Acyl-Co-A dehydrogense
- (D) Thiolase

268. Zellweger's syndrome is due to inherited absence of

- (A) Peroxisomes
- (B) Phospholipase A₁
- (C) Acyl-Co-A dehydrogenase
- (D) Thiolase

269. Bassen-Kornzweig syndrome is due to

- (A) Absence of Apo-C-II
- (B) Defect in Apo-B synthesis
- (C) Absence of Apo-E
- (D) Absence of Apo-D

270. Enzyme deficient in Hyperammonemia type II is

- (A) Glutamine synthetase
- (B) Glutaminase
- (C) Ornithine transcarbamoylase
- (D) Carbamoylphosphate synthetase

271. An important finding in Hyperammonemia type II is

- (A) Increased serum gluatmine level
- (B) Enlarged liver
- (C) Mental retardation
- (D) Increased carbamoyl phosphate synthetase

272. Absence of the enzyme argininosuccinate synthetase causes

- (A) Argininosuccinic aciduria
- (B) Hyperargininemia
- (C) Tricorrhexis nodosa
- (D) Citrullinemia

273. Tricorrhexis nodosa is a characteristic finding of

- (A) Argininosuccinic aciduria
- (B) Citrullinemia
- (C) Phenylketonuria
- (D) Hyperargininemia

274. Elevated blood argininosuccinate level is found in

- (A) Hyperargininemia
- (B) Argininosuccinic aciduria
- (C) Citrullinemia
- (D) Tyrosinosis

275. Hyperargininemia, a defect in urea synthesis develops due to deficiency of the enzyme:

- (A) Ornithine transcarbamoylase
- (B) Argininosuccinase
- (C) Arginase
- (D) Argininosuccinate synthetase

276.	Albinism is due to deficiency of the enzyme: (A) Phenylalanine hydroxylase	284.	A coenzyme required in transamination reactions is			
	(B) Tyrosinase (C) p-Hydroxyphenylpyruvic acid oxidase		(A) Coenzyme A (B) Coenzyme Q (C) Biotin (D) Pyridoxal phosphate			
	(D) Tyrosine dehydrogenase	285.	Coenzyme A contains a vitamin which is			
277.	Neonatal tyrosinemia is due to deficiency of the enzyme:		(A) Thiamin (B) Ascorbic acid (C) Pantothenic acid (D) Niacinamide			
	(A) p-Hydroxyphenylpyruvate hydroxylase(B) Fumarylacetoacetate hydrolase(C) Phenylalanine hydroxylase(D) Tyrosine dehydrogenase	286.	Cobamides contain a vitamin which is (A) Folic acid (B) Ascorbic acid (C) Pantothenic acid (D) Vitamin B ₁₂			
278.	Which of the following is a substrate- specific enzyme?	287.	A coenzyme required in carboxylation reactions is			
	(A) Hexokinase (B) Thiokinase (C) Lactase (D) Aminopeptidase		(A) Lipoic acid (B) Coenzyme A (C) Biotin (D) All of these			
279.	Coenzymes combine with	288.	Which of the following coenzyme takes			
	(A) Proenzymes (B) Apoenzymes (C) Holoenzymes (D) Antienzymes		part in tissue respiration? (A) Coenzyme Q (B) Coenzyme A			
280.	Coenzymes are required in which of the		(C) NADP (D) Cobamide			
	following reactions?	289.	The enzyme hexokinase is a			
	(A) Oxidation-reduction(B) Transamination		(A) Hydrolase (B) Oxidoreductase (C) Transferase (D) Ligase			
	(C) Phosphorylation (D) All of these	290.	Which of the following is a proteoly enzyme?			
281.	Which of the following coenzyme takes part in hydrogen transfer reactions?		(A) Pepsin (B) Trypsin (C) Chymotrypsin (D) All of these			
	(A) Tetrahydrofolate (B) Coenzyme A (C) Coenzyme Q (D) Biotin	291.	Enzymes which catalyse binding of two substrates by covalent bonds are known as			
282.	Which of the following coenzyme takes part in oxidation-reduction reactions?		(A) Lyases (B) Hydrolases (C) Ligases (D) Oxidoreductases			
	(A) Pyridoxal phosphate(B) Lipoic acid	292.	The induced fit model of enzyme action was proposed by			
	(C) Thiamin diphosphate(D) None of these		(A) Fischer (B) Koshland (C) Mitchell (D) Markert			
283.	3 3	293.	Allosteric inhibition is also known as			
	phsophate, the coenzyme is (A) Mg ⁺⁺ (B) ATP (C) Both (A) and (B) (D) None of these		(A) Competitive inhibition(B) Non-competitive inhibition(C) Feedback inhibition(D) None of these			

294.	294. An allosteric enzyme is generally inhibit- ed by		Serum lactate dehydrogenase rises in (A) Viral hepatitis		
	 (A) Initial substrate of the pathway (B) Substrate analogues (C) Product of the reaction catalysed by allosteric enzyme 		(B) Myocardial infarction (C) Carcinomatosis (D) All of these		
	(D) Product of the pathway	303.	Which of the following serum enzymerises in myocardial infarction:		
295.	When the velocity of an enzymatic reaction equals $V_{\rm max'}$ substrate concentration is		(A) Creatine kinase (B) GOT (C) LDH (D) All of these		
	(A) Half of K_m (B) Equal to K_m (C) Twice the K_m (D) Far above the K_m	304.	From the following myocardial infarction the earliest serum enzyme to rise is		
296.	In Lineweaver-Burk plot, the y-intercept represents		(A) Creatine Kinase (B) GOT (C) GPT (D) LDH		
	(A) V_{max} (B) K_{m} (C) K_{m} (D) $1/K_{m}$	305.	Proenzymes:		
297.	In competitive inhibition, the inhibitor		(A) Chymotrysinogen(B) Pepsinogen(C) Both (A) and (B)(D) None of these		
	 (A) Competes with the enzyme (B) Irreversibly binds with the enzyme (C) Binds with the substrate (D) Competes with the substrate 	306.	Alkaline phosphatase is present in (A) Liver (B) Bones (C) Placenta (D) All of these		
298	Competitive inhibitors	307.	Which of the following isoenzyme of		
	(A) Decrease the K_m (B) Decrease the V_{max} (C) Increase the K_m (D) Increase the V_{max}		lactate dehydrogenase is raised in serum in myocardial infarction:		
299.			$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	(A) Enzyme concentration(B) Substrate concentration(C) Inhibitor concentration(D) None of these	308.	Enzymes which are always present in are organism are known as (A) Inducible enzymes (B) Constitutive enzymes (C) Functional enzymes		
300.	Physostigmine is a competitive inhibitor of		(D) Apoenzymes		
	(A) Xanthine oxidase(B) Cholinesterase(C) Carbonic anhydrase	309.	Inactive precursors of enzymes are known as (A) Apoenzymes (B) Coenzymes (C) Proenzymes (D) Holoenzymes		
	(D) Monoamine oxidase	310.			
301.	Carbonic anhydrase is competitively inhibited by (A) Allopurinol (B) Acetazolamide (C) Aminopterin (D) Neostigmine		(A) Carboxypeptidase(B) Aminopeptidase(C) Chymotrypsin(D) Pepsinogen		

(A) Liver

(C) Muscles

(B) Myocardium

(D) Brain

311. Allosteric enzymes regulate the formation 321. Alkaline phosphatase is present in of products by (A) Liver (B) Bones (A) Feedback inhibition (C) Intestinal mucosa (D) All of these (B) Non-competitive inhibition 322. All of the following are zinc-containing Competitive inhibition enzymes except Repression-derepression (A) Acid Phosphatase 312 Regulation of some enzymes by covalent (B) Alkaline Phosphatase modification involves addition or removal (C) Carbonic anhydrase of (D) RNA polymerase (A) Acetate (B) Sulphate **Phosphate** (D) Coenzyme 323. All of the following are iron-containing enzymes except 313. Covalent modification of an enzyme generally requires a (A) Carbonic anhydrase (B) Catalase (B) cAMP (A) Hormone (C) Peroxidase (C) Protein kinase (D) All of these (D) Cytochrome oxidase 314. An inorganic ion required for the activity of an enzyme is known as 324. Biotin is a coenzyme for (A) Activator (B) Cofactor (A) Pyruvate dehydrogenase (D) None of these (C) Coenzyme (B) Pyruvate carboxylase (C) PEP carboxykinase 315. The first enzyme found to have isoenzymes was (D) Glutamate pyruvate transminase (A) Alkaline Phosphatase 325. Enzymes accelerate the rate of reactions (B) Lactate dehydrogenase by (C) Acid Phosphatase Increasing the equilibrium constant of reactions (D) Creatine kinase 316. Lactate dehydrogenase is located in (B) Increasing the energy of activation Decreasing the energy of activation (A) Lysosomes (B) Mitochondria Decreasing the free energy change of the (C) Cytosol (D) Microsomes reaction 317. Lactate dehydrogenase is a 326. Kinetics of an allosteric enzyme are (A) Monomer (B) Dimer explained by (C) Tetramer (D) Hexamer (A) Michaelis-Menten equation 318. Ceruloplasmin is absent in (B) Lineweaver-Burk plot (A) Cirrhosis of liver (B) Wilson's disease (C) Hill plot (C) Menke's disease (D) Copper deficiency (D) All of these 319. Ceruloplasmin oxidizes 327. Covalent modification of an enzyme usually involves phosphorylation / (A) Copper (B) Iron dephosphorylation of (C) Both (A) and (B) (D) None of these (A) Serine residue 320. Creatine kinase is present in all of the (B) Proline residue following except (C) Hydroxylysine residue

(D) Hydroxyproline residue

(160) MCQs IN BIOCHEMISTRY

328. V_{max} of an enzyme may be affected by

- Hq (A)
- (B) Temperature
- (C) Non-competitive inhibitors
- (D) All of these

329. In enzyme assays, all the following are kept constant except

- (A) Substrate concentration
- (B) Enzyme concentration
- (C) pH
- (D) Temperature

330. If the substrate concentration is much below the km of the enzyme, the velocity of the reaction is

- Directly proportional to substrate concentration
- Not affected by enzyme concentration
- Nearly equal to V_{max}
- Inversely proportional to substrate concentration

331. Enzymes requiring NAD as co-substrate can be assayed by measuring change in absorbance at

- (A) 210 nm
- (B) 290 nm
- (C) 340 nm
- (D) 365 nm

332. Different isoenzymes of an enzyme have the same

- (A) Amino acid sequence
- (B) Michaelis constant
- (C) Catalytic activity
- (D) All of these

333. From the pentapeptide, phe-ala-leu-lysarg, phenylalanine residue is split off by

- (B) Chymotrypsin
- (C) Aminopeptidase (D) Carboxypeptidase

334. A high-energy phosphate among the following is

- (A) Glucose-6-phosphate
- (B) Glucose-1-phosphate
- (C) 1, 3-Biphoglycerate
- (D) All of these

335. The highest energy level is present amongst the following in

- (A) 1, 3-Biphosphoglycerate
- (B) Creatine phosphate
- (C) Carbamoyl phosphate
- (D) Phosphoenol pyruvate

336. Daily urinary urobilingen excretion in adult men is

- (A) 0-4 mg
- (B) 5-8 mg
- (C) 9-12 mg
- (D) 13-20 mg

337. In obstructive jaundice, faecal urobilinoaen is

- (A) Absent
- (B) Decreased
- (C) Increased
- (D) Normal

338. Acetyl-CoA can be formed from

- (A) Pyruvate
- (B) Fatty acids
- (C) ketone bodies
- (D) All of these

339. Pyruvate is converted into acetyl-CoA by

- (A) Decarboxylation
- (B) Dehydrogenation
- Oxidative decarboxylation
- Oxidative deamination

340. Conversion of pyruvate into acetyl CoA is catalysed by

- (A) Pyruvate dehydrogenase
- (B) Didrolipoyl acetyl transferase
- (C) Dihydrolipoyl dehydrogenase
- All the 3 acting in concert

341. Pyruvate dehydrogenase complex is located in

- (A) Cytosol
- (B) Lysosomes
- (C) Mitochondria
- (D) Endoplasmic reticulum

342. A flavoprotein in pyruvate dehydrogenase complex is

- (A) Pyruvate dehydrogenase
- (B) Didrolipoyl acetyl transferase
- (C) Dihydrolipoyl dehydrogenase
- (D) None of these

(C) Succinate thickinase

(D) Succinate dehydrogenase

343. Pyruvate dehydrogenase complex is 352. All of the following are intermediates of regulated by citric acid cycle except (A) Covalent modification (A) Oxalosuccinate (B) Oxaloacetate (B) Allosteric regulation (C) Pyruvate (D) Fumarate Both (A) and (B) 353. All of the following intermediates of citric None of these acid cycle can be formed from amino acids 344. An allosteric inhibitor of pyruvate dehyexcept drogenase is (A) α-Ketoglutarate (B) Fumarate (A) Acetyl CoA (B) ATP (C) Malate (D) Oxaloacetate (C) NADH (D) Pyruvate 354. Glycolytic pathway is located in 345. Ribozymes: (A) Mitochondria (B) Cytosol (A) RNA enzyme (B) Non-protein enzymes (C) Microsomes (D) Nucleus (C) Catalyst function (D) All of these 355. End product of aerobic glycolysis is 346. In citric acid cycle, NAD is reduced in (A) Acetyl CoA (B) Lactate (B) Two reactions (A) One reactions (D) CO₂ and H₂O (C) Pyruvate (C) Three reactions (D) Four reactions 356. During fasting, glucose is phosphorylated 347. Among citric acid cycle enzymes, a flavomainly by protein is (A) Hexokinase (B) Glucokinase (A) Malate (C) Both (A) and (B) (D) None of these (B) **Fumarase** Succinate dehrogenase 357. Glucokinase is found in Isocitrate dehrogenase (A) Muscles (B) Brain 348. In citric acid cycle, GDP is phosphorylated (C) Liver (D) All of these 358. In anaerobic glycolysis, energy yield (A) Succinate dehydrogenase from each molecule of glucose is (B) Aconitase (A) 2 ATP equivalents (B) 8 ATP equivalents (C) Succinate thiokinase (C) 30 ATP equivalents (D) 38 ATP equivalents (D) Fumarse 359. Which of the following is an allosteric 349. Malonate is an inhibitor of enzyme? (A) Malate dehydrogenase (A) Phosphohexose isomerase (B) α-Ketoglutarate dehydrogenase (B) Phosphotriose isomerase (C) Succinate dehydrogenase (C) Lactate dehydrogenase (D) Isocitrate dehydrogenase (D) Phosphofructokinase 350. Isocitrate dehydrogenase is allosterically 360. Glycolysis is anaerobic in inhibited by (A) Liver (B) Brain (A) Oxalosuccinate (B) α-Ketoglutarate (C) Kidneys (D) Erythrocytes (C) ATP (D) NADH 361. Phosphofructokinase is allosterically 351. All of the following are allosteric enzymes inhibited by except (A) Fructose-1, 6-biphosphate (A) Citrate synthetase (B) Lactate (B) a-Ketoglutarate dehdrogenase

(C) Pyruvate

(D) Citrate

(162) MCQs IN BIOCHEMISTRY

362. Glucose-6-phosphate is an allosteric 370. Glucose-6-phosphate dehydrogenase is inhibitor of induced by (A) Glucokinase (A) 6-Phosphogluconolactone (B) Hexokinase Glucose-6-phosphate (C) Phosphohexose isomerase Ribose-5-phosphate None of these (D) Insulin 363. ATP is a co-substrate as well as an allos-371. The decarboxylation reaction in HMP teric inhibitor of shunt is catalysed by (A) Phosphofructokinase (A) Gluconolactone hydrolase Hexokinase 6-Phosphogluconate dehydrogenase (C) Glucokinase 6-Phosphogluconate decarboxylase (D) None of these Transaldolase 364. Complete oxidation of one molecule of 372. The first pentose formed in HMP shunt is glucose into CO, and H,O yields (A) Ribose-5-phosphate (B) Ribulose-5-phosphate (A) 8 ATP equivalents (B) 15 ATP equivalents Xylose-5-phosphate (D) Xylulose-5-phosphate 30 ATP equivalents 373. The regulatory enzyme in HMP shunt is (D) 38 ATP equivalents (A) Glucose-6-phosphate dehydrogenase 365. A unique by-product of glycolysis in (B) 6-Phosphogluconate dehydrogenase erythrocytes is Both (A) and (B) (A) Lactate (D) None of these (B) 1, 3-Biphosphoglycerate 374. The rate of HMP shunt reactions is (C) 2, 3-Biphosphoglycerate (A) Increased by Insulin (D) All of these (B) Increased in diabetes mellitus 366. Which of the following enzymes incorpo-(C) Increased by glucagons rates inorganic phosphate into the sub-(D) Increased in starvation strate? Phosphoglycerate kinase 375. Glycogenesis requires (B) Glyceraldehyde-3-phosphate dehydrogenase (A) GTP (C) Pyruvate kinase (C) UTP (D) None of these (D) Enolase 376. Glycogen synthetase catalyses the 367. Rapoport-Luebering cycle is located in formation of (B) Muscles (A) Liver (A) α -1, 4-Glycosidic bonds (C) Brain (D) Erythrocytes (B) α -1, 6-Glycosidic bonds (C) Both (A) and (B) 368. Glycerol can enter glycolytic pathway via (D) None of these (A) Dihydroxyacetone phosphate 377. Glycogenoloysis is increased by (B) 1, 3-Biphospoglycerate (C) 3-Phosphoglycerate (A) Glucagon (B) Insulin (D) 2-Phosphoglycerate (C) Epinephrine (D) cAMP 369. HMP shunt is present in 378. Hepatic glycogenoloysis is increased by (A) Erythrocytes (B) Liver (A) Insulin (B) Glucagon

(C) Epinephrine

(D) Glucocorticoids

(D) All of these

(C) Testes

379.	Glycogen phosphorylase liberates the		388.	Gluconeogenesis does not occur in			
	following from glyd	cogen		(A) Brain (B) Kidneys			
	(A) Glucose			(C) Muscles (D) Liver			
	(B) Glucose-6-phosph		389.	Glucose cannot be synthesized from			
	(C) Glucose-1-phosph	ate		(A) Glycerol (B) Lactate			
	(D) Maltose			(C) Alanine (D) Leucine			
380.	After the action of p gen is converted in	hosphorylase, glyco- to	390.	Coenzyme for phosphoenolpyruvate			
	(A) Amylopectin	(B) dextrin		carboxykinase is			
	(C) Amylose	(D) Maltose		(A) ATP (B) ADP			
391	Glucose-1-phosph	nate liberated from		(C) GTP (D) GDP			
301.		e converted into free	391.	Therapeutic enzymes:			
	glucose in			(A) Streptokinase (B) Asparaginase			
	(A) Liver	(B) Kidneys		(C) Riboflavinase (D) Both (A) and (B)			
	(C) Muscles	(D) Brain	200				
382	. ,	nt in phosphorylase is	392.	A gluconeogenic enzyme among the following is			
002.	(A) NAD	ii iii piiospiioi ylase is		(A) Phosphofructokinase			
		1		(B) Pyruvate kinase			
	(B) Pyridoxal phospho			(C) Phosphoenol pyruvate carboxykinase			
	(C) Thiamin pyrophos	pnale		(D) Glucokinase			
	(D) Coenzyme A		202	• •			
383.		glucose-1-phosphate formed by ycogenoloysis in muscles is oxidized to		Glucose-6-phosphatase and PEP carboxy kinase are regulated by			
	CO ₂ and H ₂ O, the energy yield will be			(A) Covalent modification			
	(A) 2 ATP equivalents			(B) Allosteric regulation			
	(C) 4 ATP equivalents	• •		(C) Induction and repression			
	•	•		(D) All of these			
384.	 A molecule of phosphorylase kinase is made up of 			The maximum possible chain length of			
	(A) 4 subunits	(B) 8 subunits	074.	fatty acids formed in the pathway of de			
	(C) 12 subunits	(D) 16 subunits		novo synthesis is			
	• •	• •		(A) 16 Carbon atoms (B) 18 Carbon atoms			
385.	Cyclic AMP binds to			(C) 20 Carbon atoms (D) 24 Carbon atoms			
	(A) Catalytic subunits	-	395.	Acetyl CoA required for de novo synthesis			
	(B) Regulatory subuni	-	075.	of fatty acids is obtained from			
	•	of phosphorylase kinase		(A) Breakdown of existing fatty acids			
	(D) Regulatory subunit	ts of phosphorylase kinase		(B) Ketone bodies			
386.	Glucose is the only	source of energy for		(C) Acetate			
	(A) Myocardium	(B) Kidneys		(D) Pyruvate			
	(C) Erythrocytes	(D) Thrombocytes	001	, , ,			
397	. Glycerol-3-phosphate for the synthesis of		396.	Formation of acetyl CoA from pyruvate for de novo synthesis of fatty acids requires			
JJ/.		pose tissue is derived					
	from						
	(A) Phosphatidic acid	(B) Diacylglycerol					
	(C) Glycerol	(D) Glucose		(C) ATP citrate lyase (D) All of these			
	,	• •		להו עוו מו ווופזפ			

397.	The major site for elongation of medium chain fatty acids is		405.	Which one of the following cofactors must be utilized during the conversion of acetyl CoA to malonyl CoA?			
	(A) Mitochondri(C) Microsomes	, , ,			TPP		ACP
398.	• •	fatty acids is inhibited by		٠,	NAD+	, ,	Biotin
070.	(A) NADPH (C) Malonyl Co.	(B) Acetyl CoA	406.	req	uires a coe	nzyme	llowing enzymes derived from the
399.	The enzyme regulating extramitochondrial fatty acid synthesis is			vitamin whose structure is shown below? (A) Enoyl CoA hydratase			
	(A) Thioesterase (B) Acetyl CoA (C) Acyl transfe	carboxylase rase		(C) (D)	·	osphatas osphate	dehydrogenase
	(D) Multi-enzym	·	407.				from the vitamin uired by enzymes
400.	(A) Citrate	(B) Insulin d (B) (D) None of these		inv foll	olved in the owing?	synthe	sis of which of the
401.	All the following	ng statements about acetyl ase are true except:		(C)	ATP CTP	(D)	UTP NADH
	(A) It is activate (B) It is inhibited (C) It can under		408.	sho the (A)		are requires nzymes drogenas	se
402.	All the following statements about acetyl CoA carboxylase are true except				Pyruvate dehy Malate dehyd	•	
	acids (B) It is required fatty acids	d for de novo synthesis of fatty d for mitochondrial elongation of for microsomal elongation of fatty	409.	(A) (B)	the following Ubiquinone CoA Pyruvate dehy		penzymes except
	acids	Tor microsomar clongation or raily		(D)	Lipoic acid		
	(D) Insulin conve	erts its inactive form into its active	410.	Wh	ich of the fol	lowing	is not a cofactor?
403.	Both Acyl car	rier protein (ACP) of fatty se and coenzyme (CoA) are			Mg Cu	, ,	Iron Methylcobalamine
	(A) Contain rea (B) Contain thy	Contain reactive phosphorylated Contain thymidine		All the following compounds armembers of the electron transport chair except (A) Ubiquinone (B) Carnitine			
		tine reactive groups		(A) (C)	Ubiquinone NAD		FAD
404.	_	he following transfers acyl	412.		amine is esse		
	(A) Thiamine py (B) Lipomide (C) ATP (D) NADH	vrophosphate		(A) (B) (C) (D)	Pyruvate dehy Isocitrate deh Succinate deh Acetyl CoA sy	ydrogen nydrogen	ase nase

ENZYMES

413. Adenylate cyclase is activated by 422. A substrate for the enzyme aldolase is (A) Insulin (B) Glucagon (A) galactose-6-phosphate (C) Prostaglandin E_1 (D) Ca^{2+} ions (B) isocitric acid (C) Glucose-1-phosphate 414. Maximum enzyme activity is observed at (D) Fructose 1, 6 diphosphate (A) Acidic pH (B) Neutral pH 423. Decarboxylation of α -keto acids requires (C) Basic pH (D) Optimum pH (A) Thiamine pyrophosphate, FAD, NAD+ 415. Which of the following is known as bone Flavin mononucleotide forming enzyme? (C) NADP+ (A) Alkaline phosphatase (D) NAD+ only (B) Acid phosphatase 424. Coenzyme A contains the vitamin: (C) Leucine aminopeptidase (D) γ-glutamyl transpeptidase (A) Riboflavin (B) Pantothenic acid (C) Pyridoxine (D) Thiamine 416. Conversion of pepsinogen to pepsin is 425. Which of the following is not a component (A) Intra molecular rearrangement of coenzyme A? Breaking of hydrogen bonds (A) Adenylic acid (C) Covalent modification Pantothenic acid (D) Polymerisation (B) (C) β -mercaptoethylamine 417. Which of the following is not having an Deoxyadenylic acid apoenzyme and coenzyme? 426. Malic enzyme convers malic acid, in the (A) Lactate dehydrogenase presence of NADP+ to Pyruvic acid. This (B) Succinate dehydrogenase reaction is a/an (C) Malate dehydrogenase Decarboxylation (D) Pepsin Decarboxylation and Dehydrogenation 418. Pyruvate dehydrogenase is a/an Dehydrogenation (A) Isomerase (B) Lyase Oxidation (D) (D) Oxido reductase (C) Ligase 427. The following reaction is characteristic of what type of enzymes? 419. Homogentisic oxidase is an (A) Oxidase $2H_2O_2 \rightarrow {}_2H_2O + O_2$ (B) Monooxygenase (A) Peroxides (C) Dioxygenase (B) Catalase (D) Anaerotic dehydrogenase Dehydrogenase Copper containing oxidases 420. Isocitrate dehydrogenase can use as a cofactor. 428. Of Which warburg's yellow enzyme contains as a prosthetic group? (A) NAD+ only (B) NADP+ only (C) NAD+ or NADP+ (D) FMN and FAD (A) Thiamine pyrophosphate (B) **Biotin** 421. The rate of most enzyme catalysed NAD+ (C) reactions changes with pH. As the pH increases, this rate Riboflavin-5-phosphate (A) reaches a minimum, then increases 429. Dehydrogenases utilize, as coenzymes, all (B) reaches a maximum, then decreases of the following except (C) increases (A) NAD+ (B) NADP+ (D) decreases (C) FAD (D) FH₄

(166) MCQs IN BIOCHEMISTRY

\sim							
430.	(A) Urease	(B) Glutaminase	438.	(A) (B)	Potentiation of acti	vity ivity	
431.	(C) Arginase Urease is a	(D) None of these			Preparation of acti All of these	vity	
	(A) Lyase (C) Isomerase	(B) Ligase(D) Hydrolase	439.		s catalyzes form s from fatty acid		on of CoA deriva oA and ATP:
432.	Velocity maximum the substrate conce (A) The molecular weight (B) Km value	•		(B) (C)	Acyl CoA dehydro Enoyl hydrase β-OH acyl CoA de Thio kinase		
	(C) Isoelectric pH (D) Pk value		440.	allo	steric activator	of	nate is a powerfu
433.	Which of the following amino acid has been shown as one of the active site of phosphoglucomutase? (A) Lysine (B) Tyrosine			(B) (C)	Fructose 1, 6 diph Phosphofructokina Hexokinase Fructokinase	•	natase
	(C) Serine	(D) Histidine	441.	'Cle	earing factor' is		
434.	The inhibition of genase by malonat (A) Competitive inhibit (B) Non-competitive in	tion		(B) (C)	Lipoprotein lipase Crotonase 7-dehydro choleste β-sitosterol	erol	
	(C) Uncompetitive inhibition			Maltase attacks only			
435.	(D) Feedback inhibition Cobamide coenzym				α-glucosides Starch		β-glucosides Dextrins
	-	(B) Riboflavin	443.		sin is	` '	
436.	(C) Pyridoxine The isozyme CK	(D) Vitamin B ₁₂ -MB is specifically		-	Exo-peptidase		
	increased in the blood of patients who had		444.		enzyme in sali	va	which hydrolyze
	(A) Skeletal muscle di(B) Recent myocardia(C) Infective hepatitis			(C)	,	(D)	Chymotrysin Malate
		enzyme, catalyzing	445.	 If a coenzyme is required in an enzym reaction, the former usually has th function of 			

formation of α , β unsaturated fatty acyl CoA derivative.

- (A) Acyl CoA dehydrogenase
- (B) Enoyl hydrase
- (C) β -OH acyl CoA dehydrogenase
- (D) Thiolase

- (A) Acting as an acceptor for one of the cleavage products of the substrate
- (B) Enhancing the specificity of the apo enzyme
- (C) Increasing the number of receptor sites of the apo enzyme
- (D) Activating the substrate

ENZYMES (167)

446. The Michaehis-Menten hypothesis:

- (A) Postulates the formation of an enzyme substrate complex
- (B) Enables us to calculate the isoelectric point of an enzyme
- (C) States that the rate of a chemical reaction may be independent of substrate concentration
- States that the reaction rate is proportional to substrate concentration

447. Schardinger's enzyme is

- (A) Lactate dehydrogenase
- (B) Xanthine dehydrogenase
- (C) Uric oxidase
- (D) Lamino acid dehydrogenase

448. Tryptophan pyrolase is currently known as

- (A) Tryptophan deaminase
- (B) Tryptophan dioxygenase
- (C) Tryptophan mono oxygenase
- (D) Tryptophan decarboxylase

449. An enzyme which brings about lysis of bacterial cell wall is

- (A) Amylase
- (B) Lysozyme
- (C) Trypsin
- (D) Lipase

450. Trypsin has no action on

- (A) Hemoglobin
- (B) Albumin
- (C) Histone
- (D) DNA

451. Multiple forms of the same enzymes are known as

- (A) Zymogens
- (B) Isoenzymes
- (C) Proenzymes
- (D) Pre-enzymes

452. In non-competitive enzyme action

- (A) V_{max} is increased
- (B) Apparent k_m is increased
- (C) Apparent k_m is decreased
- (D) Concentration of active enzyme molecule is reduced

453. An allosteric enzyme influences the enzyme activity by

(A) Competiting for the catalytic site with the substrate

- (B) Changing the specificity of the enzyme for the substrate
- (C) Changing the conformation of the enzyme by binding to a site other than catalytic site
- (D) Changing the nature of the products formed

454. Which of the following regulatory reactions involves a reversible covalent modification of an enzyme?

- (A) Phosphorylation of serine OH on the enzyme
- (B) Allosteric modulation
- (C) Competitive inhibition
- (D) Non-competitive inhibition

455. A competitive inhibitor of an enzyme has which of the following properties?

- (A) It is frequently a feedback inhibitor
- (B) It becomes covalently attached to an enzyme
- (C) It decreases the V_{max}
- It interferes with substrate binding to the enzyme

456. When [s] is equal to K_m, which of the following conditions exist?

- (A) Half the enzyme molecules are bound to substrate
- (B) The velocity of the reaction is equal to Vmax
- (C) The velocity of the reaction is independent of substrate concentration
- (D) Enzyme is completely saturated with substrate

457. Which of the following statements about an enzyme exhibiting allosteric kinetics with cooperative interaction is false?

- (A) A plot of $V-V_{\downarrow}$ [s] has a sigmaidal shape
- (B) An inhibitor may increase the apparent K_m
- (C) Line weaver Bnrk plot is useful for determining K_m and V_{max}
- (D) Removal of allosteric inhibitor may result in hyperbolic V-S [s] plot

458. Pantothenic acid acts on

- (A) NADP
- (B) NADPH
- (C) FAD
- (D) CoA

459. Vitamin deficiency that causes fatty liver includes all except

- (A) Vitamin E
- (B) Pyridoxine
- C) Retionic acid
- (D) Pantothenic acid

460. In which of the following types of enzymes an inducer is not required?

- (A) Inhibited enzyme (B) Cooperative enzyme
- (C) Allosteric enzyme (D) Constitutive enzyme

461. In which of the following types of enzyme water may be added to a C-C double bond without breaking the bond?

- (A) Hydrolase
- (B) Hydratase
- (C) Hydroxylase
- (D) Esterase

462. 'Lock' and 'Key' model of enzyme action proposed by Fisher implies that

- (A) The active site is flexible and adjusts to
- (B) The active site requires removal of PO₁ group
- (C) The active site is complementary in shape to that of the substrate
- Substrates change conformation prior to active site interaction

463. In competitive inhibition of enzyme action

- (A) The apparent K_m is decreased
- (B) The apparent K_m is increased
- (C) V_{max} is decreased
- (D) Apparent concentration of enzyme molecules decreased

464. In competitive inhibition which of the following kinetic effect is true?

- (A) Decreases both K_m and V_{max}
- (B) Increases both K_m and V_{max}
- Decreases K_m without affecting V_{max}
- (D) Increases K_m without affecting V_{max}

465. Enzymes increase the rates of reactions by

- (A) Increasing the free energy of activation
- (B) Decreasing the energy of activation
- (C) Changing the equilibrium constant of the
- Increasing the free energy change of the

466. The most useful test for the diagnosis of acute hemorrhagic pancreatitis during the first few days is

- (A) Urinary lipase test (B) Serum calcium
- (C) Urinary amylase (D) Serum amylase

467. The best test for acute pancreatitis in the presence of mumps is

- (A) A serological test for mumps
- Serum amylase
- (C) Urinary amylase
- Serum lipase

468. The slow moving fraction of LDH is typically increased in pancreas with

- (A) Cerebrovascular accidents
- Acute myocardial infarction
- Acute pancreatitis
- Acute viral hepatits

469. Which of the following enzyme typically elevated in alcoholism?

- Serum ALP
- Serum GOT
- Serum v-GT
- (D) Serum acid phosphatase

470. Patients with hepatocellular jaundice, as compared to those with purely obstructive jaundice tend to have

- (A) Lower serum ALP, LDH and AST activity
- Lower serum ALP, Higher LDH and AST activity
- Higher serum ALP, LDH and AST activity
- Higher serum ALP, Lower LDH and AST activity

If results of the serum bilirubin, serum ALP, LDH and AST determinations suggest obstructive jaundice, the best confirmatory test would be the estimation of

- (A) Serum ALT
- Serum 5' nucleotidase
- Serum Pseudo cholinesterase
- (D) None of these

472. Which enzyme estimation will be helpful in differentiating the elevated serum ALP found in obstructive jaundice as well as bone disorders?

- (A) Serum AST
- (B) Serum ALT
- (C) Serum LDH
- (D) Serum γ-GT

473. Cardiac muscle contains which of the following CK osoenzyme?

- (A) BB only
- (B) MM and BB only
- (C) MM, BB and MB (D) MM and MB only

(A) Acute hepatitis

(B) Muscular distrophies

(C) Breast carcinoma (D) Pulmonary embolism

(D) Chloroform

(C) NaOH

474. Liver and skeletol me characterized by on contact of the characterized by on contact of the characteristics.					stase can be us be used for the		for the hydrolysis drolysis of
	fraction?	me LDH isoenzyme			Sucrose		Starch
) LDH-1 and LDH-2		, ,	Cellulose	. ,	Maltose
	(C) LDH-3 and LDH-4 (D (E) LDH-5) LDH-2 and LDH-3	483.			_	statements is true?
475.	On the third day follow myocardial infarction estimation will have value?	on, which enzyme		(B)	Enzymes have na Enzymes are high Enzymes are living Enzymes get activ	ly sp g org	ecific in their action janisms
	, ,) Serum CK	484.	Enz	ymes activity is	con	trolled by
	(C) Serum ALT (D) Serum LDH		(A)	pH of the solution		
476.	Serum AST activity is n elevated as the result			(B)	•		
	(A) Myocardial infarction			(C)	Concentration of t		•
	(B) Passive congestion of			(E)	All of these		
	(C) Muscular dystrophies		485.	Wh	ich of the follow	rina	is not true regard-
	(D) Peptic ulcer				enzymes?	9	
477.	On which day following infarction the estimation			(A)	They catalyze only	a pa	rticular type of reaction
	be of greatest signific			(B)	•	e eve	n after separation from
) Second day		(C)	the source	مط ما	fter the completion of
) Fourth day		(0)	the reaction they		
478.	In which diseases of th isoenzymes LDH-1 a released in plasma?			(D)	They are irrever	rsibly	destroyed at high
	(A) Kidney, R.B.C and Liv	/er		(E)	Their activity depe	nds o	n the pH of the solution
	(B) Heart, Kidney and R.		486	The	number of enz	yme	es known is about
	(C) Heart, Kidney and Liv			(A)	10,000	(B)	100
	(D) Heart, Lungs and Bra			(C)	50	(D)	26
479.	Plasma non-functiona	ıl enzymes are	487.	Nic	otine present in	tob	acco is a/an
	(A) totally absent(B) low concentration in p	plastic		(A)	Alkaloid	(B)	Terpene
	(C) important for diagnos			(C)	Steroid	(D)	Protein
	(D) All of these		488.			aloic	I present in the oil
480.	Pyruvate dehydroge	enase contains all			nemlock is	(D)	N.P
	except	\ NIAD			Cocaine		Nicotine
	, ,) NAD) CoA	400		Quinine		Morphine
4 21	31. An increase in LDH-5 enzyme is seen in				aloids are usua n with	ily p	ourified by extrac-
701.	the following except	Chizyine is seen ill			Ether	(B)	Dil HCl

490.	The number of N-MC groups in alkaloids is best estimate with the help of								
	(A)	HI	(B)	H_2SO_4					
	(C)	(CH ₃ CO) ₂ CO	(D)	CH ₃ Mg I					
401	A -		h:4	-f					

491. A competitive inhibitor of an enzyme

- (A) Increases K_m without affecting V_{max}
- (B) Decreases K_m without affecting V_{max}
- (C) Increases V_{max} without affecting K_m
- (D) Decreases both V_{max} and Km

492. The Michaelis constant, K_m is

- (A) Numerically equal to $\frac{1}{2}$ V_{max}
- (B) Dependent on the enzyme concentration
- (C) Independent of pH
- (D) Numerically equal to the substrate concentration that gives half maximal velocity

493. The rate of an enzyme catalyzed reaction was measured using several substrate concentrations that were much lower than K_m, the dependence of reaction velocity on substrate concentration can best be described as

- (A) Independent of enzyme concentration
- (B) A constant fraction of V_{max}
- (C) Equal to K_m
- (D) Proportional to the substrate concentration

494. The presence of a non competitive inhibitor

- (A) Leads to both an increase in the V_{max} of a reaction and an increase in K_{m}
- (B) Leads to a decrease in the observed Vmax
- (C) Leads to a decrease in K_m and V_{max}
- (D) Leads to an increase in K_m without affecting V_{max}

495. Which one of the following statements is not characteristic of allosteric enzymes?

- (A) They frequently catalyze a committed step early in a metabolic pathway
- (B) They are often composed of subunits
- (C) They follow Michaelis-Menten kinetics
- (D) They frequently show cooperativity for substrate binding

496. The abnormal isoenzyme need not

- (A) Be an oxidoreductase
- (B) Have any coenzyme
- (C) Require ATP

1	(D	Be	localized	intracell	ularl	v
1	$\boldsymbol{\nu}$		locuiizca	IIIII accii	olali	y

(E) Be a catalyst

497. LDH assays are most useful in diagnosing diseases of the

(A) Heart (B) Pancreas (C) Brain (D) Kidney

498. The chemical forces that bind most coenzymes and substrates to enzymes such as LDH are

- (A) Hydrogen bonds (B) Peptide bonds
- (C) Coordinate bonds (D) Covalent bonds

499. How many different proteins may be present in normal LDH?

(A) One (B) Two (C) Three (D) Four

500. All the isoenzymes function with the coenzyme:

(A) NADP+ (B) FAD (C) Lipoate (D) NAD+

501. 'Lock' and 'Key' theory was proposed by

(A) Sorenson (B) Fischer (C) Mehler (D) Sanger

502. Which of the following forms part of a coenzyme?

(A) Zn²⁺ (B) Lipase (C) Vitamin B₂ (D) Lysine

503. The shape of an enzyme and consequently its activity can be reversibly altered from moment to moment by

(A) Heat (B) Amino acid substrate (C) Allosteric subunits (D) Sulfur substitutions

504. Which one of the following regulatory actions involves a reversible covalent modification of the enzyme?

- (A) Phosphorylation of ser-OH on the enzyme
- (B) Allosteric modulation
- (C) Competitive inhibition
- (D) Non-competitive inhibition

505. An enzyme is a

(A) Carbohydrate (B) Lipid
(C) Protein (D) Nucleic acid

a few of the enzymes:

R groups of the amino acids

(B) Amino groups of the amino acids

506. An enzyme promotes a chemical reaction Carboxyl group of the amino acids Exposed sulfur bonds (A) Lowering the energy of activation 513. Allosteric enzymes contain (B) Causing the release of heat which acts as a (A) Multiple subunits (B) Single chain (C) Two chains (D) Three chains (C) Increasing molecular motion 514. Isoenzymes of lactate dehydrogenase are (D) Changing the free energy difference between useful for the diagnosis of substrate and product (A) Heart disease (B) Kidney disease 507. In most metabolic pathways, all needed (C) Liver disease (D) Both (A) and (C) enzymes are arranged together in a multienzyme complex within a 515. IUB had divided enzymes into how many classes? (A) Solution of ATP (B) Membrane (A) 6 (B) 5 8 (D) 4 Quanternary protein (C) (D) Coenzyme 516. The first enzyme isolated, purified and crystallied from Jack bean (Canavalia) by 508. An enzyme catalyzes the conversion of an summer in 1926 was aldose sugar to a ketose sugar would be classified as one of the (A) Urease (B) Insulin (C) Ribonuclease (D) Zymase (A) Transferases (B) Isomerases (C) Oxido reductases (D) Hydrolases 517. Who suggested that enzymes are proteinaceous? 509. The function of an enzyme is to (A) Buchner (B) Kuhne (A) Cause chemical reactions that would not (C) Sumner (D) Pasteur otherwise take place (B) Change the rates of chemical reactions 518. Feedback inhibition of enzyme action is affected by (C) Control the equilibrium points of reactions (D) Change the directions of reactions (A) Enzyme (B) Substrate (D) None of these (C) End products 510. In which of the following types of enzymes, water may be added to a C—C 519. The enzyme that converts glucose to double bond without breaking the bond? glucose-6-phosphate is (A) Hydrolase (A) Phosphatase (B) Hydratase (B) Hexokinase (C) Phosphorylase (D) Glucose synthetase (C) Hydroxylase (D) Oxygenase 520. Enzymes are required in traces because 511. Enzymes increases the rate of reactions (A) Have high turnover number (A) Increasing the free energy of activation Remain unused at the end of reaction and (B) Decreasing the energy of activation are re used (C) Changing the equilibrium constant of the (C) Show cascade effect reaction (D) All correct Increasing the free energy change of the 521. An organic substance bound to an enzyme and essential for the activity of 512. The active site of an enzyme is formed by enzyme is called

(A) Holoenzyme

(C) Coenzyme

(B) Apoenzyme

(D) Isoenzyme

522. Enzyme catalysed reactions occur in (C) Dry seeds have more reserve food (D) Seedlings are tender (A) Pico seconds (B) Micro seconds (C) Milli seconds (D) None of these 531. Coenzymes FMN and FAD are derived from vitamin 523. An enzyme can accelerate a reaction up to (B) B₆ (A) C (A) 10¹⁰ times (B) 101 times (C) B₁ (D) B₂ (C) 10¹⁰⁰ times (D) 10 times 532. Template/lock and key theory of enzyme 524. In plants, enzymes occur in action is supported by (A) Flowers only (B) Leaves only (A) Enzymes speed up reaction (C) All living cells (D) Storage organs only Enzymes occur in living beings and speed 525. Zymogen is a up certain reactions (A) Vitamin (B) Enzyme precursor Enzymes determine the direction of reaction (C) Modulator (D) Hormone (D) Compounds similar to substrate inhibit enzyme activity 526. Cofactor (Prosthetic group) is a part of holoenzyme, it is 533. Combination of apoenzyme and coenzyme produces (A) Inorganic part loosely attached (B) Accessory non-protein substance attached (A) Prosthetic group (B) Holoenzyme (C) Organic part attached loosely Enzyme substrate complex (D) None of these (D) Enzyme product complex 527. A protein having both structural and Enzyme inhibition caused by a substance 534. enzymatic traits is resembling substrate molecule is (A) Myosin (B) Collagen (A) Competitive inhibition (C) Trypsin (D) Actin Non-competitive inhibition Feedback inhibition 528. Enzymes are different from catalysts in (D) Allosteric inhibition (A) Being proteinaceous (B) Not used up in reaction 535. An enzyme brings about Functional at high temperature (A) Decrease in reaction time (D) Having high rate of diffusion (B) Increase in reaction time (C) Increase in activation energy 529. Enzymes, vitamins and hormones are Reduction in activation energy common in (A) Being proteinaceous 536. Feedback inhibition of enzyme is influen-Being synthesized in the body of organisms ced by Enhancing oxidative metabolism (B) External factors (A) Enzyme Regulating metabolism (C) End product (D) Substrate 530. Dry seeds endure higher temperature 537. Coenzyme is than germinating seeds as (A) Often a vitamin (B) Always an inorganic (A) Hydration is essential for making enzymes compound sensitive to temperature (C) Always a protein (D) Often a metal

(B) Dry seeds have a hard covering

ENZYMES

538. Genetic engineering requires enzyme:

- DNA ase
- (B) Amylase
- (C) Lipase
- Restriction endonuclease

539. Which is not true about inorganic catalysts and enzymes?

- (A) They are specific
- (B) Inorganic catalysts require specific not needed by enzymes
- (C) They are sensitive to pH
- (D) They speed up the rate of chemical reaction

540. Key and lock hypothesis of enzyme action was given by

- (A) Fischer
- (B) Koshland
- (C) Buchner
- (D) Kuhne

541. An example of feedback inhibition is

- (A) Allosteric inhibition of hexokinase by glucose-6-phosphate
- Cyanide action on cytochrome
- Sulpha drug on folic acid synthesizer bacteria
- Reaction between succinic dehydrogenase and succinic acid

542. Feedback term refers to

- (A) Effect of substrate on rate of enzymatic reaction
- (B) Effect of end product on rate reaction
- (C) Effect of enzyme concentration on rate of
- (D) Effect of external compound on rate of reaction

543. Allosteric inhibition

- (A) Makes active site unifit for substrate
- (B) Controls excess formation and end product
- (C) Both (A) and (B)
- (D) None of these

544. The ratio of enzyme to substrate molecules can be as low as

- (A) 1:100,000
- (B) 1:500,000
- (C) 1:10,000
- (D) 1:1,000

545. Vitamin B₂ is component of coenzyme:

- (A) Pyridoxal phosphate
- (B) TPP
- (C) NAD
- (D) FMN/FAD

546. K_m value of enzyme is substrate concentration at

- (A) ½ V_{max}
- (B) $2 V_{max}$
- (C) ½ V_{max}
- (D) 4 V_{max}

547. Part of enzyme which combines with nonprotein part to form functional enzyme is

- (A) Apoenzyme
- (B) Coenzyme
- (C) Prosthetic group (D) None of these

548. Who got Nobel Prize in 1978 for working on enzymes?

- (A) Koshland
- (B) Arber and Nathans
- (C) Nass and Nass
- (D) H.G. Khorana

549. Site of enzyme synthesis in a cell is

- (A) Ribosomes
- (B) RER
- (C) Golgi bodies
- (D) All of these

550. The fruit when kept is open, tastes bitter after 2 hours because of

- (A) Loss of water from juice
- (B) Decreased concentration of fructose in juice
- (C) Fermentation by yeast
- (D) Contamination by bacterial enzymes

551. Hexokinase (Glucose + ATP → Glucose-6-P + ADP) belongs to the category:

- (A) Transferases
- (B) Lysases
- Oxidoreductases (D) Isomerases

552. Which enzyme is concerned with transfer of electrons?

- (A) Desmolase
- (B) Hydrolase
- Dehydrogenase
- (D) Transaminase

553. The best example of extracellular enzymes (exoenzyme) is

- (A) Nucleases
- (B) Digestive enzymes
- Succinic dehydrogenase
- (D) None of these

554.	Which mineral element controls the		(B) NH ₂ group of amino acids
555.	activity of Nitrate reductase? (A) Fe (B) Mo (C) Zn (D) Ca Name the enzyme that acts both as carboxylase at one time and oxygenase at another time.	563.	(C) CO group of amino acids (D) Sulphur bonds which are exposed Carbonic anhydrase enzyme has maximum turn over number (36 million). Minimum turn over number for an enzyme:
	(A) PEP carboxylase(B) RuBP carboxylase(C) Carbonic anyhdrase(D) None of these		(A) DNA polymerase(B) Lysozyme(C) Penicillase(D) Lactase dehydrogenase
556.	A metabolic pathways is a	564.	In cell, digestive enzymes are found mainly in
	 (A) Route taken by chemicals (B) Sequence of enzyme facilitated chemical reactions 		(A) Vacuoles (B) Lysosomes (C) Ribosomes (D) Lomasomes
	(C) Route taken by an enzyme from one reaction to another(D) Sequence of origin of organic molecules	565.	Substrate concentration at which an enzyme attains half its maximum velocity
	The energy required to start an enzymatic reaction is called (A) Chemical energy (B) Metabolic energy (C) Activation energy (D) Potential energy Out of the total enzymes present in a cell,		(A) Threshold value (B) Michaelis-Menton constant (C) Concentration level (D) None of these
336.	a mitochondrion alone has	566.	Which enzyme hydrolyses starch?
	(A) 4% (B) 70% (C) 95% (D) 50%		(A) Invertase (B) Maltase (C) Sucrase (D) Diastase
559.	Creatine phosphokinase isoenzyme is a marker for	567.	Enzymes functional in cell or mitochondria are
	(A) Kidney disease (B) Liver disease (C) Myocardial infarction		(A) Endoenzymes (B) Exoenzymes (C) Apoenzymes (D) Holoenzymes
560	(D) None of these Which inactivates an enzyme by occu-	568.	The enzymes present in the membrane of mitochondria are
300.	pying its active site? (A) Competitive inhibitor (B) Allosteric inhibitor (C) Non-competitive inhibitor (D) All of these	F/0	(A) Flavoproteins and cytochromes(B) Fumarase and lipase(C) Enolase and catalase(D) Hexokinase and zymase
561.	Which one is coenzyme?	569.	A mitochondrial marker enzyme is (A) Aldolase
	(A) ATP (B) Vitamin B and C (C) CoQ and CoA (D) All of these		(B) Amylase (C) Succinic dehydrogenase
562.	The active site of an enzyme is formed by		(D) Pyruvate dehydrogenase

(A) R group of amino acids

(A) Taq polymerase (B) RNA polymerase (C) Ribonuclease (D) Endonuclease (C) RADT (D) NAD* (D) NAD* (D) National factor of the following is a microsomal enzyme inducer? (A) Indomethacin (B) Clofibrate (C) Tolbutamide (D) Glutethamide (D) Glutethamide (D) Microsomes (D) Nuclei (C) Microsomes (D) Nuclei	570.		enzyme used ion (PCR) is	in _I	polymerase chain	579.		nsaminase ac zyme:	tivit	y needs the Co-
571. Which of the following is a microsomal enzyme inducer? (A) Indomethacin (B) Clofibrate (C) Tollournide (D) Glutethamide (D) Glutethamide (C) Microsomes (D) Nuclei 572. Identify the correct molecule which controls the biosynthesis of proteins in living organisms. (A) DNA (B) RNA (C) Purines (D) Pyrimidines 573. The tear secretion contains an antibacterial enzyme known as (A) Zymase (B) Diastase (C) Lysozyme (D) Lipase 574. Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic anhydrase enzyme. (A) Methazolamide (B) Acetazolamide (C) Dichlorphenamide (D) Benzolamide (C) Dichlorphenamide (D) Benzolamide (C) NADP* (D) FAD* 576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biolin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) Boy PO4 (B) NADP* (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL 580. The biosynthesis of urea occurs mainly in the liver: (A) Cytosol (B) Mitochondria (C) Microsomes (D) Nuclei (A) Amylose (B) Lipase (C) Pepsin (D) Trypsin All of the following compounds are intermediates of TCA cycle except (A) Maleate (B) Pruvate (C) Oxaloacetate (B) Pruvate (C) Oxaloacetate (B) Pruvate carboxy kinase (C) Pepsin (D) Trypsin All of the following compounds are intermediates of TCA cycle except (A) Maleate (B) Pruvate (C) Oxaloacetate (D) Fumarate (C) Pepsin (D) Trypsin All of the following compounds are intermediates of TCA cycle except (A) Maleate (B) Pruvate (C) Oxaloacetate (B) Pruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Muscles 584. In the normal resting state of human most of the blood glucose burnt as fuel is consumed by (A)		(A) T	aq polymerase	(B)	RNA polymerase		(A)	ATP	(B)	B ₆ -PO ₄
the liver: (A) Indomethacin (B) Clofibrate (C) Tolbutamide (D) Glutethamide (E) Tolbutamide (D) Glutethamide (E) Purines (D) Pyrimidines (E) Pyrimidines (E) Purines (D) Pyrimidines (E) Purines (D) Pyrimidines (E) Purines (D) Pyrimidines (E) Purines (D) Pyrimidines (E) Pepsin (D) Trypsin (E) Purines (E) Pepsin (D) Trypsin (E) Pyruvate Compounds are intermediates of TCA cycle except (A) Maleate (B) Pyruvate (C) Coxloacetate (D) Fumarate (E) Visozyme (D) Lipase (E) Pepsin (D) Trypsin (C) Coxloacetate (D) Fumarate (E) Purines of TCA cycle except (A) Maleate (B) Pyruvate (C) Coxloacetate (D) Fumarate (E) Coxloacetate (D) Fumarate (E) Visozyme (D) Lipase (E) Phosphoenol of lactic acid to glucose, three reactions of glycolytic pathway are circumvented, which of the following enzymes do not participate? (A) Pyruvate carboxylase (B) Phosphoenol pyruvate carboxy kinase (C) Pichlorphenamide (D) Benzolamide (C) Dichlorphenamide (D) Benzolamide (C) Dichlorphenamide (D) Benzolamide (E) Pyruvate carboxylase (E) Plosphoenol pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Muscles (E) Piruvate Carboxylase (E) Pyruvate carboxylase (E) Glucose-6-phosphatase (E) Glucose-6-phos		(C) R	Ribonuclease	(D)	Endonuclease		(C)	FADT	(D)	NAD+
C Tolbutamide (D Glutethamide C Microsomes D Nuclei	571.			ng i	s a microsomal en-	580.			f ure	a occurs mainly in
controls the biosynthesis of proteins in living organisms. [A] DNA [B] RNA [C] Purines (D) Pyrimidines 573. The tear secretion contains an antibacterial enzyme known as [A] Zymase [B] Diastase [C] Lysozyme (D) Lipase 574. Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic anhydrase enzyme. [A] Methazolamide [B] Acetazolamide [C] Dichlorphenamide (D) Benzolamide [C] NADP* (D) FAD* 576. The co-enzyme containing an automatic hetero ring in the structure is [A] Biotin (B) TP [C] Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: [A] B _c PO ₄ (B) NADP* [C] TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form [A] D (B) DL (A) Amylose (B) Lipase (C) Pepsin (D) Trypsin (A) Amylose (B) Lipase (C) Pepsin (D) Trypsin (C) Pepsin (D) Trypsin (A) Amylose (B) Lipase (C) Pepsin (D) Trypsin (C) Propsin (D) Trypsin (C) Propsin (D) Trypsin (C) Acmylose (E) Lipase (C) Pepsin (D) Trypsin (C) Propsin (D) Trypsin (C) Propsin (D) Trypsin (A) Amylose (B) Lipase (C) Pepsin (D) Trypsin (C) Acycle except (A) Maleate (B) Pyruvate (C) Oxaloacetate (D) Fumarate (C) Oxaloacetate (D) Fumarat								,		
(A) DNA (B) RNA (C) Purines (D) Pyrimidines 573. The tear secretion contains an antibacterial enzyme known as (A) Zymase (B) Diastase (C) Lysozyme (D) Lipase 574. Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic anhydrase enzyme. (A) Methazolamide (B) Acetazolamide (C) Dichlorphenamide (D) Benzolamide (C) Dichlorphenamide (D) Benzolamide (C) NADP+ (D) FAD+ 576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B _o *PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL 582. All of the following compounds are intermediates of TCA cycle except (A) Maleate (B) Pyruvate (C) Oxaloacetate (D) Fumarate (C	572.	controls the biosynthesis of proteins in			581.					
(C) Purines (D) Pyrimidines 573. The tear secretion contains an antibacterial enzyme known as (A) Zymase (B) Diastase (C) Lysozyme (D) Lipase 574. Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic anhydrase enzyme. (A) Methazolamide (B) Acetazolamide (C) Dichlorphenamide (D) Benzolamide (C) Dichlorphenamide (D) Benzolamide (C) NADP+ (D) FAD+ (C) NADP+ (D) FAD+ 576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B _o -PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL 582. All of the following compounds are intermediates of TCA cycle except (A) Maleate (B) Pyruvate (C) Oxaloacetate (D) Fumarate (C) Oxaloacetate (D) Fumara		living	organisms.				(A)	Amylose	(B)	Lipase
573. The tear secretion contains an antibacterial enzyme known as [A] Zymase [B] Diastase [C] Lysozyme [D] Lipase 574. Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic anhydrase enzyme. [A] Methazolamide [B] Acetazolamide [C] Dichlorphenamide [D] Benzolamide [C] Dichlorphenamide [D] FAD+ [C] NADP+ [D] FAD+ 576. The co-enzyme containing an automatic hetero ring in the structure is [A] Biotin [B] TPP [C] Sugar Phosphate [D] Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: [A] B _G -PO ₄ [B] NADP+ [C] TPP [D] ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form [A] D [B] DL 582. All of the following compounds are intermediates of TCA cycle except (A) Maleate [B] Pyruvate (C) Oxaloacetate [D] Fumarate [C] Oxaloa							(C)	Pepsin	(D)	Trypsin
terial enzyme known as (A) Zymase (B) Diastase (C) Liysozyme (D) Lipase 574. Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic anhydrase enzyme. (A) Methazolamide (B) Acetazolamide (C) Dichlorphenamide (D) Benzolamide (C) Dichlorphenamide (D) Benzolamide (C) NADP⁺ (D) FAD⁺ 576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B _o -PO ₄ (B) NADP⁺ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL (C) Citrote (D) Flouride (C) Oxaloacetate (D) Fumarate (D) Calcuse, Oxaloacetate (D) Fumarate (C) Oxaloacetate (D) Fumarate (D) Fumarate (C) Oxaloacetate (D) Fumarate (D) Fumarate (D) Fumarate (A) Pyruvate carioxylase (B) Phosphoenol pyruvate carboxylase (B) Phosphoenol pyruvate carboxylase (C) Pyruvate kinase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (E) Pyruvate carboxylase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (E) Pyruvate carboxylase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Muscles (D) Muscles (D) Glucose-6-phosphatase (D) Muscles (D) Fumarate (C) Pyruvate kinase (D) Pyruvate carboxylase (D) Pyruvate carboxylase (D) Pyruvate kinase (D) Glucose-6-phosphatase (D) Muscles (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Muscles (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Muscles (D) Glucose-6-phosphatase (D)		(C) P	urines	(D)	Pyrimidines	582.	All	of the follow	/ing	compounds are
(A) Zymase (B) Diastase (C) Lysozyme (D) Lipase 574. Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic anhydrase enzyme. (A) Methazolamide (B) Acetazolamide (C) Dichlorphenamide (D) Benzolamide (C) Dichlorphenamide (D) Benzolamide (C) Dichlorphenamide (D) Benzolamide (C) NADP+ (D) FAD+ 576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B ₆ -PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL (C) Oxaloacetate (D) Fumarate (c) Caltive reactions of glycolytic pathway are circumvented, which of the following enzymes do not participate? (A) Pyruvate carboxylase (B) Phosphoenol pyruvate carboxylase (B) Phosphoenol pyruvate carboxylase (C) Pyruvate kinase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Aliver (B) Brain (C) Adipose fissue (D) Muscles (D) Aliver (B) Brain (C) Glucose-6-PO ₄ (D) GTP (D) Aliver (B) Brain (C) Glucose-6-PO ₄ (D) GTP (D) Aliver (B) Brain (C) Glucose-6-PO ₄ (D) GTP (D) Aliver (B) Brain (C) Gluc	573.						inte	ermediates of T	CA cy	ycle except
C Lysozyme D Lipase 583. In conversion of lactic acid to glucose, three reactions of glycolytic pathway are circumvented, which of the following enzymes do not participate?										•
574. Identify one of the canbonic anhydrase inhibitor that inhibit only luminal carbonic anhydrase enzyme. (A) Methazolamide (B) Acetazolamide (C) Dichlorphenamide (D) Benzolamide (D) Glucose-6-phosphatase (C) Pyruvate kinase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (E) Pyruvate kinase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (E) Pyruvate kinase (D) Glucose-6-posphatase (E) Pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-posphatase (E) Pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-posphatase (E) Pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-posphatase (E) Posphatase (C) Pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-phosphatase (E) Pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-phosphatase (E) Pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-phosphatase (E) Pyruvate carboxy kinase (C) Pyruvate carboxy kinase (C) Pyruvate carboxy kinase (C) Pyruvate carboxy kinase (C) Pyruvate carboxy kinase (D) Glucose-6-posphatase (E) Pyruvate carboxy kinase (C) Pyruvate carboxy kinase (C) Pyruvate carboxy kinase (C) Pyruvate carboxy kinase (C) Pyruvate carboxy kinase (D) Aliver (C) Pyruvate carboxylase (D) Aliver (D			,				(C)	Oxaloacetate	(D)	Fumarate
inhibitor that inhibit only luminal carbonic anhydrase enzyme. (A) Methazolamide (B) Acetazolamide (C) Dichlorphenamide (D) Benzolamide (B) Phosphoenol pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-phosphatase (D) Muscles (C) Glucose-6-phosphatase (D) Muscles (C) Glucose-6-phosphatase (D) Muscles (D) Muscles (D) Glucose-6-phosphatase (D) Muscles (D) Muscles (D) Glucose-6-phosphatase (D) Muscles (D) Muscles (D) Muscles (D) Muscles			•		·	583.				
(C) Dichlorphenamide (D) Benzolamide (B) Phosphoenol pyruvate carboxy kinase (C) Pyruvate kinase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (E) Pyruvate kinase (D) Alsoning (C) Adipose fissue (D) Adipose fissue (D) Alsoning (C) Al	inhibitor that inhibit only luminal			circumvented, which of the following						
575. Group transferring Co-enzyme is (A) CoA (B) NAD+ (C) NADP+ (D) FAD+ 584. In the normal resting state of human most of the blood glucose burnt as fuel is consumed by (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B ₆ -PO ₄ (B) NADP+ (C) TPP (D) ATP 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Glucose-6-PO ₄ (D) Grp 587. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Glucose-6-PO ₄ (D) Fluoride		(A) N	Nethazolamide	(B)	Acetazolamide		(A)	Pyruvate carboxy	/lase	
(A) CoA (B) NAD+ (C) NADP+ (D) FAD+ 576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B _c -PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) Co-enzyme is: (C) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (D) Glucose-6-phosphatase (A) Liver (B) Brain (C) Adipose tissue (D) Muscles (A) Citric Acid (B) Pyruvate (C) Glucose-6-PO ₄ (D) GTP (C) Glucose-6-Phosphatase (A) Liver (B) Brain (C) Adipose tissue (D) Muscles (A) Citric Acid (B) Pyruvate (C) Glucose-6-PO ₄ (D) GTP (C) Glucose-6-PO ₄ (D) GTP (D) Fluoride		(C) D	Dichlorphenamide	(D)	Benzolamide		(B)	Phosphoenol pyr	uvate	carboxy kinase
(A) CoA (B) NAD+ (C) NADP+ (D) FAD+ 576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B ₆ -PO ₄ (B) NADP+ (C) TPP (D) ATP 584. In the normal resting state of human most of the blood glucose burnt as fuel is consumed by (A) Liver (B) Brain (C) Adipose tissue (D) Muscles 585. A regulator of the enzyme glucogen synthase is (A) Citric Acid (B) Pyruvate (C) Glucose-6-PO ₄ (D) GTP 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride	575.	Grou	p transferring	Co-	enzyme is			(C) Pyruvate kinase		
(C) NADP+ (D) FAD+ 576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B ₆ -PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL 584. In the normal resting state of human most of the blood glucose burnt as fuel is consumed by (A) Liver (B) Brain (C) Adipose tissue (D) Muscles 585. A regulator of the enzyme glucogen synthase is (A) Citric Acid (B) Pyruvate (C) Glucose-6-PO ₄ (D) GTP 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride					-		(D)	Glucose-6-phosp	hatas	e
576. The co-enzyme containing an automatic hetero ring in the structure is (A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B _o -PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL consumed by (A) Liver (B) Brain (C) Adipose tissue (D) Muscles (D) Muscles (D) Muscles (A) Citric Acid (B) Pyruvate (C) Glucose-6-PO ₄ (D) GTP 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride		` '		٠,		584.				
(A) Biotin (B) TPP (C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B _o -PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL (C) Adipose tissue (D) Muscles (C) Adipose tissue (D) Muscles (C) Adipose tissue (D) Muscles (C) Glucose-6-PO ₄ (D) GTP 585. A regulator of the enzyme glucogen synthase is (A) Citric Acid (B) Pyruvate (C) Glucose-6-PO ₄ (D) GTP 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride	576.								cose	burnt as fuel is
(C) Sugar Phosphate (D) Co-enzyme 577. The example of hydrogen transferring Co-enzyme is: (A) B _c -PO ₄ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL (C) Adipose fissue (D) Muscles (A) Citric Acid (B) Pyruvate (C) Glucose-6-PO ₄ (D) GTP 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (C) Citrate (D) Fluoride			•				٠,		(B)	Brain
577. The example of hydrogen transferring Co-enzyme is: (A) B ₆ -PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL 585. A regulator of the enzyme glucogen synthase is (A) Citric Acid (B) Pyruvate (C) Glucose-6-PO ₄ (D) GTP 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride				١,			(C)	Adipose tissue	(D)	Muscles
(A) B ₆ -PO ₄ (B) NADP+ (C) TPP (D) ATP 578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL (C) Glucose-6-PO ₄ (D) GTP 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride	577.	The e	example of h		,	585.	syn	nthase is		, ,
578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL (C) Glocose-G-FO ₄ (D) GIF 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride			=	(B)	NADP+					•
578. Enzyme catalyzed hydrolysis of proteins produces amino acid of the form (A) D (B) DL 586. A specific inhibitor for succinate dehydrogenase is (A) Arsenite (B) Malonate (C) Citrate (D) Fluoride			-				(C)	Glucose-6-PO ₄	(D)	GTP
produces amino acid of the form (A) D (B) DL (C) Citrate (B) Malonate (C) Citrate	579			. ,		586.		-	for s	succinate dehydro-
(A) Arsenite (B) Malonate (A) D (B) DL (C) Citrate (D) Fluoride	<i>37</i> 0.									
, , , , , , , , , , , , , , , , , , ,		-							٠,	
		(C) L					(C)	Citrate	(D)	Fluoride

ANSWERS									
1. A	2. B	3. A	4. D	5. C	6. D				
7. C	8. A	9. B	10. D	11. C	12. D				
13. A	14. B	15. D	16. A	1 <i>7</i> . B	18. C				
19. B	20. D	21. A	22. A	23. B	24. B				
25. D	26. B	27. A	28. A	29. A	30. B				
31. C	32. A	33.B	34. C	35. A	36. B				
37. A	38. B	39. D	40. C	41. D	42. A				
43. A	44. B	45. C	46. A	47. D	48. B				
49. C	50. B	51.B	52. A	53. A	54. C				
55. C	56. D	57. C	58. C	59. A	60. B				
61. A	62. C	63. A	64. D	65. A	66. D				
67. A	68. C	69. B	70. B	71. A	72. B				
73. A	74. B	75. A	76. B	77. C	78. C				
79. A	80. A	81. C	82. C	83. B	84. D				
85. B	86. B	87. D	88. D	89. D	90. A				
91. A	92. A	93. A	94. B	95. A	96. B				
97. A	98. A	99. A	100. A	101. A	102. B				
103. A	104. C	105. A	106. D	107. B	108. A				
109. D	110. C	111.B	112.B	113. D	114. A				
115.B	116. A	117.B	118. C	119.B	120. C				
121. A	122. C	123. C	124. D	125. A	126. A				
127. B	128. B	129. B	130. B	131. C	132. A				
133. D	134. A	135. B	136. B	137. A	138. B				
139. B	140. C	141. D	142. B	143. A	144. B				
145. B	146. A	147. A	148. C	149. A	150. A				
151. B	152. B	153. D	154. A	155. A	156. D				
157. A	158. A	159. A	160. A	161. A	162. A				
163. B	164. A	165. A	166. B	167. B	168. C				
169. A	170. D	171. D	172. A	173. C	174. B				
175. B	176. A	177. C	178.A	179. D	180. B				
181. D	182. B	183. D	184. C	185. C	186. A				
187. D	188. C	189. A	190. A	191. C	192. C				
193. A	194. C	195. A	196. A	197. B	198. B				
199. B	200. A	201. D	202. C	203. D	204. D				
205. B	206. A	207. D	208. A	209. A	210. D				
211. A	212. A	213. D	214. D	215. A	216. A				
217. A	218. A	219. D	220. D	221. C	222. C				
223. B	224. D	225. A	226. A	227. B	228. B				
229. D	230. A	231.B	232. D	233. A	234. A				
235. D	236. B	237. A	238. C	239. B	240. C				
241.B	242. A	243. B	244. A	245. A	246. A				
247. A	248. A	249. A	250. C	251.B	252. C				

ENZYMES 177

253. B	254. D	255. C	256. D	257. A	258. B
259. D	260. C	261.B	262. C	263. A	264. D
265. A	266. B	267. C	268. A	269. B	270. C
271. C	272. A	273. D	274. A	275. B	276. C
277. B	278. C	279. B	280. D	281. C	282. B
283. B	284. D	285. C	286. D	287. C	288. A
289. C	290. D	291. C	292. B	293. C	294. D
295. D	296. B	297. D	298. C	299. B	300. B
301.B	302. D	303. D	304. A	305. B	306. D
307. C	308.B	309. C	310. D	311. A	312. C
313. D	314.B	315.B	316. C	317. C	318.B
319.B	320. A	321. D	322. A	323. A	324. B
325. C	326. C	327. A	328. D	329. B	330. A
331. C	332. C	333. C	334. C	335. D	336. A
337. A	338. D	339. C	340. D	341. C	342. C
343. C	344. A	345. D	346. C	347. C	348. C
349. C	350. C	351. C	352. C	353. C	354. B
355. C	356. A	357. C	358. A	359. D	360. D
361. D	362. B	363. A	364. D	365. C	366. A
367. D	368. A	369. D	370. D	371. C	372. B
373. C	374. A	375. C	376. A	377. B	378.B
379. C	380. B	381. C	382. B	383.B	384. D
385.B	386. C	387. D	388. C	389. D	390. C
391. D	392. C	393. C	394. A	395. D	396. D
397. C	398. C	399. B	400. C	401. D	402. B
403. C	404. B	405. D	406. D	407. A	408. C
409. C	410. D	411.B	412. B	413.B	414. D
415. A	416. C	417. D	418. D	419. C	420. C
421.B	422. D	423. A	424. B	425. D	426. B
427. B	428. D	429. D	430. C	431. D	432. B
433. C	434. A	435. D	436. B	437. A	438. B
439. D	440. B	441. A	442.A	443. B	444. C
445. A	446. A	447. B	448. B	449. B	450. D
451.B	452. C	453. C	454. A	455. D	456. A
457. D	458. B	459. C	460. D	461.B	462. C
463. B	464. D	465. B	466. D	467. D	468. D
469. C	470. B	471.B	472. D	473. D	474. C
475. D	476. D	477. B	478. B	479. D	480. A
481. D	482. B	483. B	484. C	485. C	486. C
487. A	488. A	489. B	490. A	491. A	492. D
493. C	494. B	495. C	496. A	497. A	498. D
499. D	500. D	501. D	502. C	503. C	504. A
505. C	506. A	507. B	508. B	509. B	510. A

511.B	512. C	513. A	514. D	515. A	516. A	
517. C	518. C	519.B	520. D	521. C	522. C	
523. A	524. C	525. B	526. B	527. A	528. A	
529. D	530. A	531. D	532. D	533.B	534. A	
535. D	536. C	537. A	538. D	539. B	540. A	
541. A	542. B	543. C	544. A	545. D	546. D	
547. C	548. A	549. B	550. D	551. C	552. A	
553. C	554. A	555.B	556. B	557. C	558. B	
559. C	560. A	561. D	562. A	563.B	564. B	
565. B	566. D	567. A	568. A	569. C	570. D	
571. D	572. A	573. C	<i>574</i> . B	575. A	576. C	
577. D	578. C	<i>57</i> 9. B	580. B	581.B	582. B	
583. B	584. B	585. C	586. B			

ENZYMES (179)

EXPLANATIONS FOR THE ANSWERS

- 4. D The functional unit of an enzyme is referred to as a holoenzyme. It is often made up of an apoenzyme (the protein part) and a coenzyme (the non-protein part).
- 47. D Concentration of enzyme, concentration of substrate, temperature, pH, presence of products, activators and inhibitors are some of the important factors that influence enzyme activity.
- 89. D It is a straight line graphic representation depicting the relation between substrate concentration and enzyme velocity. This plot is commonly employed for the calculation of Km values for enzymes.
- 133. D Active site is the small region of an enzyme where substrate binds. It is flexible in nature and it exists due to the tertiary structure of proteins. Acidic, basic and hydroxyl amino aicds are frequently found at the active site.
- 179. D There are three broad categories of enzyme inhibition:
 - (a) Reversible inhibition: The inhibitor binds noncovalently with the enzyme and the inhibition is reversible. Competitive, non-competitive and uncompetitive come under this category.
 - (b) Irreversible inhibition: The inhibitor covalently binds with the enzyme which is irreversible.
 - (c) Allosteric inhibition: Certain enzymes possessing allosteric sites are regulated by allosteric effectors.
- 219. D Enzymes are highly specific in their action compared with chemical catalysts. Three types of enzyme specificities are well-recognized.
 - (a) **Stereospecificity:** The enzymes act only on one isomer and therefore exhibit stereoisomerism. e.g., L-amino acid oxidase on L-amino acids; hexokinase on D-hexose (Note: isomerases do not exhibit stereospecificity).
 - (b) Reaction specificity: The same substrate can undergo different types of reactions, each catalysed by a separate enzyme e.g., amino acids undergoing transamination, decarboxylation etc.
 - (c) Substrate specifity: This may be absolute, relative or broad e.g., urease, ligase, hexokinase.
- 260. D
 - (a) Lock and Key model (Fischer's Template

- theory): The substrate fits to active site of an enzyme just as a key fits into a proper lock. Thus, the active site of the enzyme is rigid and preshaped where only a specific substrate can bind
- (b) **Induced fit theory** (Koshland model): As per this, the substrate induces a conformational change in the enzyme resulting in the formation of substrate binding (active) site.
- 305. C Some enzymes are synthesized in an inactive form which are referred to as proenzymes (or zymogens). They undergo irreversible modification to produce active enzymes. e.g., proenzymes chymotrypsinogen and pepsinogen are respectively converted to chymotrypsin and pepsin.
- 345. D The RNAs that can function as enzymes are referred to as ribozymes. They are thus nonprotein enzymes. It is believed that RNAs were functioning as catalysts before the occurance of proteins during evolution.
- 391. D Streptokinase is used for clearing blood clots.
 Asparaginase is employed in the treatment of leukemias.
- 438. B Certain enzymes can be made to bind to insoluble inorganic matrix (e.g., cyanogens bromide activated sepharose) to preserve their catalytic activity for long periods. Such enzymes are referred to as immobilized enzymes.
- 479. D These enzymes are either totally absent or present at a low concentration in plasma compared to their levels found in tissues. Estimation of plasma non-functional enzymes is important for the diagnosis and prognosis of several diseases.
- 514. D Lactate dehydrogenase (LDH) gas five distinct isoenzymes (LDH₁ ... LDH₅). Each one is an oligomeric protein composed of 4 subunits (N and/ or H). Isoenzymes of LDH are important for the diagnosis of heart and liver related disorders i.e., serum LDH₁ is elevated in myocardial infarction while LDH₅ is increased in liver diseases.
- 559. C Creatine kinase (CK) or creatine phosphokinase (CPK) exists as 3 isoenzymes. Each isoenzyme is a dimmer composed of two subunits (M or B or both). Elevation of CPK2 (MB) in serum is an early reliable diagnostic indication of myocardial infarction.

This page intentionally left blank

CHAPTER 7

MINERAL METABOLISM

1	When	ΛTD	forms	AME
	wnen	AIF	TOFILIS	AINL

- (A) Inorganic pyrophosphate is produced
- (B) Inorganic phosphorous is produced
- (C) Phsophagen is produced
- (D) No energy is produced

Standard free energy (ΔG°) of hydrolysis of ATP to ADP + Pi is

- (A) -49.3 KJ/mol
- (B) -4.93 KJ/mol
- (C) -30.5 KJ/mol
- (D) -20.9 KJ/mol

3. Standard free energy (△G°) of hydrolysis of ADP to AMP + Pi is

- (A) -43.3 KJ/mol
- (B) -30.5 KJ/mol
- (C) -27.6 KJ/mol
- (D) -15.9 KJ/mol

Standard free energy (ΔG°) of hydrolysis of phosphoenolpyruvate is

- (A) -61.9 KJ/mol
- (B) -43.1 KJ/mol
- (C) -14.2 KJ/mol
- (D) -9.2 KJ/mol

5. Standard free energy (△G°) of hydrolysis of creatine phosphate is

- (A) -51.4 KJ/mol
- (B) -43.1 KJ/mol
- (C) -30.5 KJ/mol
- (D) -15.9 KJ/mol

6. The oxidation-reduction system having the highest redox potential is

- (A) Ubiquinone ox/red
- (B) Fe³⁺ cytochrome a/Fe²⁺
- (C) Fe³⁺ cytochrome b/Fe²⁺
- (D) NAD+/NADH

7. If $\Delta G^{\circ} = -2.3RT$ log Keq, the free energy for the reaction will be

\ + B **±**⁴† C

10 moles 10 moles

10 moles

- (A) -4.6 RT
- (B) -2.3 RT
- (C) +2.3 RT
- (D) +4.6 RT

8. Redox potential (E_o volts) of NAD*/NADH is

- (A) -0.67
- (B) -0.32
- (C) -0.12
- (D) +0.03

Redox potential (E_o volts) of ubiquinone, ox/red system is

- (A) + 0.03
- (B) + 0.08
- (C) +0.10
- (D) +0.29

Redox potential (E_o volts) of cytochrome C, Fe³⁺/Fe²⁺ is

- (A) -0.29
- (B) -0.27
- (C) -0.08
- (D) +0.22

The prosthetic group of aerobic dehydrogenases is

- (A) NAD
- (B) NADP
- (C) FAD
- (D) Pantothenic acid

12. Alcohol dehydrogenase from liver contains

- (A) Sodium
- (B) Copper
- (C) Zinc
- (D) Magnesium

13. A molybdenum containing oxidase is

- (A) Cytochrome oxidase
- (B) Xanthine oxidase
- (C) Glucose oxidase
- (D) L-Amino acid oxidase

14. A copper containing oxidase is

- (A) Cytochrome oxidase
- (B) Flavin mononucleotide
- (C) Flavin adenine dinucleotide
- (D) Xanthine oxidase

15. The mitochondrial superoxide dismutase contains

- (A) Mg++
- (B) Mn++
- (C) Co++
- (D) Zn++

16. Cytosolic superoxide dismutase contains

- (A) Cu^{2+} and Zn^{2+}
- (B) Mn²⁺
- (C) Mn^{2+} and Zn^{2+}
- (D) Cu²⁺ and Fe²⁺

17. Cytochrome oxidase contains

- (A) Cu^{2+} and Zn^{2+}
- (B) Cu²⁺ and Fe²⁺
- (C) Cu^{2+} and Mn^{2+}
- (D) Cu²⁺

18. Characteristic absorption bands exhibited by ferrocytochrome:

- (A) α band
- (B) β band
- (C) α and β bands
- (D) α , β and γ bands

19. Monooxygenases are found in

- (A) Cytosol
- (B) Nucleus
- (C) Mitochondira
- (D) Microsomes

20. A component of the respiratory chain in mitochondria is

- (A) Coenzyme Q
- (B) Coenzyme A
- (C) Acetyl coenzyme
- (D) Coenzyme containing thiamin

21. The redox carriers are grouped into respiratory chain complex

- (A) In the inner mitochondrial membrane
- (B) In mitochondiral matrix
- (C) On the outer mitochondrial membrane
- (D) On the inner surface of outer mitochondrial membrane

22. The sequence of the redox carrier in respiratory chain is

- (A) NAD—FMN—Q—cyt b—cyt c_1 —cyt c—cyt aa_3 ——> O_2
- (B) FMN—Q—NAD—cyt b—cyt aa_3 —cyt c_1 —
 cyt c ——> O_2
- (C) NAD—FMN—Q—cyt c₁—cyt c—cyt b—cyt $aa_3 \longrightarrow O_2$
- (D) NAD—FMN—Q—cyt b—cyt aa_3 —cyt c—cyt c_1 O_2

23. The correct sequence of cytochrome carriers in respiratory chain is

- (A) Cyt b—cyt c—cyt c_1 —cyt aa_3
- (B) Cyt aa_3 cyt b—cyt c—cyt c_1
- (C) Cyt b—cyt c_1 —cyt c—cyt aa_3
- (D) Cyt b—cyt aa_3 —cyt c_1 cyt c

24. Reducing equivalents from pyruvate enter the mitochondrial respiratory chain at

- (A) FMN
- (B) NAD
- (C) Coenzyme Q
- (D) Cytb

25. Reducing equivalents from succinate enter the mitochondrial respiratory chain at

- (A) NAD
- (B) Coenzyme Q
- (C) FAD
- (D) Cytc

The respiratory chain complexes acting as proton pump are

- (A) I, II and III
- (B) I, II and IV
- (C) I, III and IV
- (D) I and II

27. If the reducing equivalents enter from FAD in the respiratory chain, the phosphate.oxygen ration (P:O) is

- (A) 2
- (B) 1
- (C) 3
- (D) 4

28. If the reducing equivalents enter from NAD in the respiratory chain, the phsphate/oxygen (P:O) is

- (A) 1
- (B) 2
- (C) 3
- (D) 4

29. One of the site of phsosphorylation in mitochondrial respiratory chain is

- (A) Between FMN and coenzyme Q
- (B) Between coenzyme Q and cyt b
- (C) Between cytochrome b and cytochrome c₁
- (D) Between cytochrome c₁ and cytochrome c

30. Rotenone inhibits the respiratory chain at

- (A) $FMN \rightarrow coenzyme Q$
- (B) $NAD \rightarrow FMN$
- (C) Coenzyme $Q \rightarrow cyt b$
- (D) Cyt b \rightarrow Cyt c₁

31. Activity of cytochrome oxidase is inhibited by

- (A) Sulphite
- (B) Sulphate
- (C) Arsenite
- (D) Cyanide

32. Transfer of reducing equivalents from succinate dehydrogenase to coenzyme Q is specifically inhibited by

- (A) Carboxin
- (B) Oligomycin
- (C) Piericidin A
- (D) Rotenone

33. Chemiosmotic theory for oxidative phosphorylation has been proposed by

- (A) Chance and Williams
- (B) Pauling and Corey
- (C) S. Waugh
- (D) P. Mitchell

34. The number of ATP produced in the oxidation of 1 molecule of NADPH in oxidative phosphorylation is

- (A) Zero
- (B) 2
- (C) 3
- (D) 4

35. The coupling of oxidation and phosphorylation in intact mitochondria:

- (A) Puromycin
- (B) Oligomycin
- (C) Streptomycin
- (D) Gentamycin

36. An uncoupler of oxidative phosphorylation is

- (A) Carboxin
- (B) Atractyloside
- (C) Amobarbital
- (D) Dinitrocresol

37. The chemical inhibiting oxidative phosphorylation, Adependent on the transport of adenine nucleotides across the inner mitochondrial membrane is

- (A) Oligomycin
- (B) Atractyloside
- (C) Dinitrophenol
- (D) Pentachlorophenol

38. Porphyrins are synthesized in

- (A) Cytosol
- (B) Mitochondria
- (C) Cytosol and mitochondria
- (D) Rough endoplasmic reticulum

39. Heme is synthesized from

- (A) Succinyl-CoA and glycine
- (B) Active acetate and glycine
- (C) Active succinate and alanine
- (D) Active acetate and alanine

40. In the biosynthesis of the iron protoporphyrin, the product of the condensation between succinyl-CoA and glycine is

- (A) α-Amino β-ketoadipic acid
- (B) δ-Aminolevulinate
- (C) Hydroxymethylbilane
- (D) Uroporphyrinogen I

41. Porphyrin synthesis is inhibited in

- (A) Mercury poisoning
- (B) Lead poisoning
- (C) Manganese poisoning
- (D) Barium poisoning

42. During synthesis of porphyrins, synthesis of δ -amino levulinic acid occurs in

- (A) Mitochondria
- (B) Cytosol
- (C) Both in mitochondria and cytosol
- (D) Ribosomes

43. In the biosynthesis of heme, condensation between succinyl CoA and glycine requires

- (A) NAD+
- (B) FAD
- (C) NADH + H⁺
- (D) B₆-phosphate

44. In mammalian liver the rate controlling enzyme in porphyrin biosynthesis is

- (A) ALA synthase
- (B) ALA hydratase
- Uroporphyrinogen I synthase
- Uroporphyrinogen III cosynthase

45. The condensation of 2 molecules of δ-aminolevulinate dehydratase contains

- (A) ALA synthase
- (B) ALA hydratase
- Uroporphyrinogen synthase I
- Uroporphyrinogen synthase III

46. The enzyme δ -aminolevulinate dehydratase contains

- (A) Zinc
- (B) Manganese
- (C) Magnesium
- (D) Calcium

47. A cofactor required for the activity of the enzyme ALA dehydratase is

- (A) Cu
- (B) Mn
- (C) Mg
- (D) Fe

48. The number of molecules of porphobilinogen required for the formation of a tetrapyrrole i.e., a porphyrin is

- (A) 1
- (C) 3
- (D) 4

49. Conversion of the linear tetrapyrrole hydroxymethylbilane to uroporphyrinogen III

- (A) Occurs spontaneously
- (B) Catalysed by uroporphyrinogen I synthase
- (C) Catalysed by uroporphyrinogen III cosynthase
- (D) Catalysed by combined action of uroporphyrinogen I synthase and uroporphyrinogen III cosynthase

50. Conversion of uroporphyrinogen III to coprophyrinogen III is catalysed by the enzyme.:

- (A) Uroporphyrinogen decarboxylase
- (B) Coproporphyrinogen oxidase
- Protoporphyrinogen oxidase
- Ferrochelatase

51. The synthesis of heme from protophyrin III is catalysed by the enzyme:

- (A) ALA synthase
- (B) Ferroreductase
- Ferrooxidase
- (D) Ferrochelatase

52. Many xenobiotics

- (A) Increase hepatic ALA synthase
- Decrease hepatic ALA sythase
- Increase hepatic ALA dehydrase (C)
- Decrease hepatic ALA dehydrase

53. Acute intermittent porphyria (paraoxymal porphyria) is caused due to deficiency of

- (A) Uroporphyrinogen I synthase
- ALA synthase
- (C) Coproporphyrinogen oxidase
- Uroporphyrinogen decarboxylase

54. The major symptom of acute intermittent porphyria includes

- (A) Abdominal pain
- Photosensitivity
- No neuropsychiatric signs
- **Dermatitis**

55. The characteristic urinary finding in acute intermittent porphyria is

- (A) Increased quantity of uroporphyrin
- Increased quantity of coproporphyrin I
- Increased quantity of coproporphyrin III
- Massive quantities of porphobilinogen

56. The enzyme involved in congenial erythropoietic porphyria is

- (A) Uroporphyrinogen I synthase
- Uroporphyrinogen III cosynthase
- Protoporphyrinogen oxidase
- (D) Ferrochelatase

57. Main symptoms of congenital erythropoietic porphyria is

- Yellowish teeth
- (B) Photosensitivity
- Abdominal pain (D) Brownish urine

58. The probable cause of porphyria cutanea tarda is deficiency of

- (A) Uroporphyrinogen oxidase
- Coproporphyrinogen oxidase
- (C) Protoporphyrinogen oxidase
- Uroporphyrinogen I synthase

MINERAL METABOLISM

(C) Carbohydrate content

(D) Electrophoretic mobility

59. The characteristic urinary finding in por-66. All immunoglobulins contain phyria cutanea tarda is (A) 4 L chains (B) 4 H chains (A) Increased quantity of porphobilinogen 3 L chains (C) (B) Increased quantity of red cell protoporphyrin (D) 2 L chains and 2 H chains (C) Increased quantity of uroporphyrin (D) Increased quantity of δ-ALA 67. An immunoglobulin molecule always contains 60. Hereditary coproporphyria is caused due (A) 1 κ and 3 λ type of chains to deficiency of (B) 2κ and 2λ type of chains (A) Protoporphyrinogen oxidase (C) 3κ and 1λ type of chains (B) ALA synthase (D) 2κ and 2λ chains (C) ALA dehydratase The number of types of H chains identified (D) Coproporphyrinogen oxidase in human is 61. The enzyme involved in variegate por-(A) 2 (B) 3 phyria is (C) (D) 5 (A) Protoporphyrinogen oxidase 69. The number of hypervariable region in L (B) Coproporphyrinogen oxidase chain is (C) Uroporphyrinogen decarboxylase (A) (B) 2 1 (D) ALA decarboxylase (C) 3 (D) 4 62. Protoporphyria (erythrohepatic) is char-70. The number of hypervariable region in H chain is acterized by the deficiency of (A) (B) 2 (A) ALA synthase (C) 3 (D) 4 (B) ALA hydratase Protophyrinogen oxidae 71. Type γ H chain is present in (D) Ferrochelatase (A) Ig G (B) Ig A (C) Ig M (D) Ig D 63. The amount of coproporphyrins excreted per day in feces is about 72. Type α H chain is present in (A) 10–50 µgs (B) 100-150 µgs (A) Ig E (B) Ig A (D) 300-1000 µgs (C) 200-250 µgs (C) Ig M (D) Ig D 64. The immunoglobulins are differentiated 73. Type μ H chain is present in and also named on the basis of (A) Ig G (C) Ig M (D) Ig D (A) Electrophoretic mobility (B) Heat stability 74. Type δ H chain is present in (C) Molecular weight (A) Ig G (D) Sedimentaiton coefficient like 7 S, 19 S etc. (C) Ig M (D) Ig D 65. The immunoglobulins are classified on the 75. Type ε H chain is present in basis of (A) Ig A (B) Ig M (A) Light chains (C) Ig D (D) Ig E (B) Heavy chains 76. A 'J' chain is present in

(A) Ig D

(C) Ig G

(B) Ig M

(D) Ig E

77.			n T chain (T protein) is	85.		immunoglobul	in w	hich can c	ross the
	•	sent in	(D)		•	centa is			
		lg A	(B) Ig M (D) Ig E			lg A		lg M	
		-			(C)	lg G	(D)	lg D	
78.	Ар	entamer immun	noglobulin is	86.		immunoglobul			
		lg G	(B) Ig A			centration of ca		=	i
	(C)	lg M	(D) Ig E			lg A		lg E	
79.			he immunoglobulin		(C)	lg M	(D)	lg G	
	molecule that binds the specific antigen is formed by		87.	The	normal serum	leve	l of Ig G is	•	
		-	of H and Labains		(A)	1200 mg%	(B)	$500~\mathrm{mg}\%$	
		Variable regions of Constant region o			(C)	300 mg%	(D)	200 mg%	
		Constant region o		88.	The	half life of Ig G	is		
		Hinge region			(A)	2–8 days	(B)	1–4 days	
80	The	class specific fu	nction of the different		(C)	19–24 days	(D)	6 days	
00.			olecules is constituted	89.	Мо	st heat labile im	mu	noalobulii	n is
	by			021				lg A	- 10
		Variable region o				lg M		lg D	
		Constant region o		00				•	h:h4
		Variable region of		90.		immunoglobul centration of ca			
	(D)	Constant region p H chain	articularly $C_H 2$ and $C_H 3$ of			lg G		lg M	•
						lg A		lg D	
81.			region of Ig molecule ind more exposed to	01				•	
		ymes is the	ma more exposed to	91.		normal serum		_	i
		-	first and second constant			1 mg%		-	
			n (domains $C_H 1$ and $C_H 2$)			3 mg%		o mg%	
	(D)	5	I Idea	92.	The	half life of Ig D	is		
	(B)	regions of H chair	second and third constant			1 day		•	
	(C)	Variable regions of			(C)	10–15 days	(D)	20–24 day	/S
		Variable regions of		93.	The	carbohydrate c	onte	ent of Ig M	is about
82	The	smallest immu	noglobulin is		(A)	2.8%	(B)	6.4%	
02.		lg G	=		(C)	8.0%	(D)	10.2%	
		lg D	(D) lg A	94.	The	immunoglob	ulin	having	highest
02		•				limentation coef			
os.			classes of Ig G is		(A)	lg G	(B)	lg A	
	(A) (C)		(B) 3 (D) 8		(C)	lg M	(D)	lg D	
			• •	95.	The	immunoglob	ulin	having	highest
84.	Mo:	st abundant lg G	subclass in the serum			lecular weight i		3	•
		la G	(B) Ia G		(A)	lg G	(B)	lg M	
		lg G₁ Ig G₃	(B) $\lg G_2$ (D) $\lg G_4$		(C)	lg E	(D)	lg A	
	101	.g ~3	1-1 19 04						

(A) Paget's disease

(C) Osteomalacia

(B) Rickets

(D) Hypervitaminosis D

96. The half life of Ig M is 107. The normal serum level of phosphorus in human adult is (A) 2 days (B) 4 days (A) 1-2 mg(B) 2-3 mg(C) 5 days (D) 8 days (C) 3-4.5 mg (D) 5-7 mg97. The normal serum level of Ig M is 108. An increase in carbohydrate metabolism (A) 50 mg% (B) 120 mg% is accompanied by temporary decrease in (C) 200 mg% (D) 300 mg% serum: 98. The immunoglobulin associated with (A) Calcium (B) Phosphate reginic antibody is (C) Iron (D) Sodium (A) Ig E (B) Ig D 109. In rickets of the common low-phosphate (C) Ig M (D) Ig A variety, serum phosphate values may go 99. The immunoglobulin having least concenas low as tration in serum is (A) 1-2 mg/100 ml (B) 2-3 mg/100 ml(A) Ig A (B) Ig M (C) 3-4 mg/100 ml (D) 4-5 mg/100 ml(C) Ig D (D) Ig E 110. The normal serum level of phosphorous 100. The half life of Ig E protein is in children varies from (A) 1-6 days (B) 2-8 days (A) 1-2 mg/100 ml (B) 2-3 mg/100 ml(C) 10 days (D) 20 days (C) 3-4 mg/100 ml (D) 4-7 mg/100 ml101. The immunoglobulin which provides 111. An inherited or acquired renal tubular highest antiviral activity is defect in the reabsorption of phosphate (A) Ig D (B) la E (Vit D resistant ricket) is characterized (C) Ig A (D) Ig G with 102. The half life of Ig A is (A) Normal serum Phosphate (A) 6 days (B) 2-4 days (B) High serum phosphate (C) 5–10 days (D) 12-20 days (C) A low blood phosphorous with elevated alkaline Phosphate 103. The normal serum level of Ig A is (D) A high blood phosphorous with decreased (A) 100 mg% (B) 200 mg% alkaline phosphatase (C) 300 mg% (D) 400 mg% 112. The total magnesium content in gms of 104. Calcium is excreted by human body is about (A) Kidney (A) 5 (B) 10 (B) Kidney and intestine (C) 15 (D) 21 (C) Kidney and liver 113. Iron is a component of Kidney and pancreas (A) Hemoglobin (B) Ceruloplasmin 105. A decrease in the ionized fraction of serum (C) Transferase (D) Transaminase calcium causes (A) Tetany (B) Rickets 114. Daily requirement of iron for normal adult male is about (C) Osteomalacia (D) Osteoporosis (A) 5 mg (B) 10 mg 106. A rise in blood calcium may indicate

(C) 15 mg

(D) 20 mg

115. The normal content of protein bound iron (PBI) in the plasma of males is (A) 120–140 µg/100 ml (B) 200–300 µg/100 ml 123. The best source of iron is (A) Organ meats (B) Milk (C) Tomato (D) Potato

(D) 200–300 μg/100 ml 116. In iron deficiency anemia

(C) 120-140 μg/100 ml

- (A) The plasma bound iron is low
- (B) The plasma bound iron is high
- (C) Total iron binding capacity is low
- (D) Both the plasma bound iron and total iron binding capacity are low

117. The total iron content of the human body is

(A) 400–500 mg (B) 1–2 g (C) 2–3 g (D) 4–5 g

118. In hepatic diseases

- (A) Both the bound iron and total iron binding capacity of the plasma may be low
- (B) Both the bound iron and total iron binding capacity of the plasma may be high
- (C) Only bound iron may be high
- (D) Only the total iron binding capacity may be high

119. The recommended daily requirement of iron for women of 18–55 yrs age is

(A) 5 mg (B) 8 mg (C) 10 mg (D) 15 mg

120. The percent of total iron in body in hemoglobin is

(A) 10–20 (B) 20–30 (C) 30–40 (D) 60–70

121. A hypochromic microcytic anemia with increased iron stores in the bone marrow may be

- (A) Iron responsive
- (B) Pyridoxine responsive
- (C) Vitamin B₁₂ responsive
- (D) Folate responsive

122. A good source of iron is

(A) Spinach (B) Milk (C) Tomato (D) Potato

124. An increased serum iron and decreased iron binding capacity is found in

- (A) Fe deficiency anemia
- (B) Sideroblastic anemia
- (C) Folate deficiency anemia
- (D) Sickle cell anemia

125. The absorption of iron is increased 2–10 times of normal in

- (A) Iron deficiency anemia
- (B) Pregnancy
- (C) Spherocytosis
- (D) Sickle cell anemia

126. Iron is mainly absorbed from

- (A) Stomach and duodenum
- (B) Ileum
- (C) Caecum
- (D) Colon

127. The iron containing nonporphyrin is

- (A) Hemosiderin (B) Catalase
- (C) Cytochrome C (D) Peroxidase

128. Molecular iron is

- (A) Stored primarily in the spleen
- (B) Exreted in the urine as Fe²⁺
- (C) Stored in the body in combination with ferritin
- (D) Absorbed in the ferric form

129. In hemochromatosis, the liver is infiltrated with

(A) Iron (B) Copper (C) Molybdenum (D) Fats

130. An acquired siderosis-Bantu siderosis is due to

- (A) Foods cooked in iron pots
- (B) Diet high in phosphorous
- (C) Diet high in calcium
- (D) High fat diet

131. The amount of copper in the human body is

(A) 50–80 mg (B) 100–150 mg (C) 400–500 mg (D) 500–1000 mg

132. The amount of copper in muscles is about 142. Menke's disease is due to an abnormality in the metabolism of (B) 30 mg (A) 10 mg (A) Iron (B) Manganese (D) 100 mg (C) 64 mg (C) Magnesium (D) Copper 133. The amount of copper in bones is about 143. Menke's disease (Kinky or steel hair dis-(B) 10 mg (A) 5 mg ease) is a X-linked disease characterized (C) 15 mg (D) 23 mg 134. The normal serum of concentration of (A) High levels of plasma copper copper in mg/100 ml varies between (B) High levels of ceruloplasmin (A) 0-5 (B) 50-100 (C) Low levels of plasma copper and of ceuloplasmin (C) 100-200 (D) 200-300 (D) High level of hepatic copper 135. The normal serum concentration of ceruloplasmin in mg/100 ml varies between 144. The trace element catalyzing hemoglobin (A) 5-10 synthesis is (B) 10-20 (C) 25-43 (D) 50-100 (A) Manganese (B) Magnesium (D) Selenium (C) Copper 136. Recommended daily dietary requirement of copper for adults is 145. The total body content of manganese is (A) 0.5-1 mg(B) 1.5-3.0 mg about (C) 3.5-4.5 mg (D) 4.5-5.5 mg (A) 2 mg (B) 4 mg (C) 8 mg (D) 10 mg 137. The richest source of copper is (A) Liver 146. In blood the values of manganese in μg (B) Milk 100 ml varies between (C) Legumes (A) 0-4 (B) 2-4(D) Green leafy vegetables (C) 3-5 (D) 4-20 138. The cytosolic superoxide dismutase 147. The adequate daily dietary requirement enzyme contains of manganese is (A) Cu²⁺ (B) Cu^{2+} and Zn^{2+} (A) 1-2 mg(B) 2-5 mg(D) Mn²⁺ (C) Zn²⁺ (D) 10-20 mg (C) 5-10 mg139. The deficiency of copper decreases the 148. Mitochondrial superoxide dismutase activity of the enzyme: contains (A) Lysine oxidase (B) Lysine hydroxylase (A) Zinc (B) Copper (C) Tyrosine oxidase (D) Proline hydroxylase (C) Magnesium (D) Manganese 140. Wilson's disease is a condition of toxicosis 149. Mitochondrial pyruvate carboxylase of contains (A) Iron (B) Copper (A) Zinc (B) Zinc (C) Chromium (D) Molybdenum (C) Manganese (D) Magnesium 141. In Wilson's disease 150. The adequate daily dietary requirement (A) Copper fails to be excreted in the bile of molybdenum for normal human adult (B) Copper level in plasma is decreased (C) Ceruloplasmin level is increased (A) 10–20 μg (B) 25–50 μg

(C) 50-70 µg

(D) 75-200 µg

(D) Intestinal absorption of copper is decreased

151.	51. In human beings molybdenum is mainly		161.	Total body content of selenium is about					
		orbed from	/D1	Video.			1–2 mg		2–4 mg
		Liver Intestine		Kidney Pancreas		(C)	4-10 mg	(D)	50-100 mg
150	` '				162.	No	rmal serum leve	l of	selenium is
152.	exc	reted in		bdenum is mainly			5 μg /100 ml 10 μg /100 ml		. •
	٠,	Feces	٠,	Sweat	163.	Sel	enium is a const	itue	nt of the enzyme:
		Urine		Tears			Glutathione perox		•
153.		lybdenum is a c					Homogentisate ox		
		Hydroxylases Transaminases		Oxidases Transferases		(C) (D)	C) Tyrosine hydroxylase		nse
154.	4. Safe and adequate daily dietary intake		164	` '		,	ılar antioxidant is		
		thromium in adu		_	104.		Chromium		Magnesium
		0.01–0.02 0.03–0.04		0.02–0.03 0.05–0.2			Selenium		Nickel
					165.	Col	oalt forms an	inte	gral part of the
155.		nest source of ch	iron	nium is			ımin:		9 p
		Brewer's yease Milk and milk pro	duct	s		(A)	B ₁	(B)	B ₆
		Yellow vegetables		•		(C)	B ₁₂	(D)	Folate
		Green vegetables			166.	Cok	oalt may act as co	ofac	tor for the enzyme:
156.			of '	'Glucose tolerance			(A) Glycl-glycine dipeptidase		
		tor" is	.				Elastase Polynucleotidases		
		Sulphur Chromium		Cobalt Selenium		(C)	Phosphatase		
157	` '				167.	, ,	•	balt	for longer periods
137.		estinai absorpi ired with	rion	of chromium is	.021		ds to		ioi ioiigoi poilous
	(A)	Mn	(B)	Mg		(A)	Polycythemia		
	(C)	Ca	(D)	Zn			Megaloblastic an		I
158.	Ser	um level of chro	miu	m in healthy adult			Pernicious anemic		
		bout				(D)	Microcytic anemic		
		2-5 μg/100 ml		. •	168.		=		ent of the body is
				50-100 μg/100 ml			25-50 gm 100-125 gm		50-/5 gm 150-200 gm
159.		omium is poten			1.0		Ü		G
		Insulin Thyroxine		Glucagon Parathromone	109.		pnur is made av amino acids:	alla	ble to the body by
160.	Rec	ommended dail	y di	etary allowance of		(A)	Cystine and methi		е
		enium for adult				(B)	Taurine and alani		.1
		20		40		(C) (D)	Proline and hydro Arginine and lysin		oline
	(C)	50	(D)	70		וטו	, againte ana iysii	10	

MINERAL METABOLISM (191 170. Sulphur containing coenzyme is 179. Dental caries occur due to (A) NAD (A) Drinking water containing less than 0.2 ppm (B) FAD of fluorine (C) Pyridoxal phosphate (B) Drinking water containing greater than 1.2 (D) Biotin ppm of fluorine (C) Drinking water containing high calcium 171. Iodine is stored in (D) Drinking water containing heavy metals (A) Thyroid gland as thyroglobulin Liver 180. Total zinc content of human body is about (C) Intestine (A) 800 mg (B) 1200 mg (D) Skin (C) 2000 mg (D) 3200 mg 172. Iodine is the constituent of (A) T_3 and T_4 (B) PTH insulin is (C) Insulin (D) Adrenaline (A) Copper (B) Chromium 173. Goitrogenic substance present in cabbage (C) Cobalt (D) Zinc 182. Metalloenzyme-retinene for polymeriza-(A) 5-vinyl-2 thio oxalzolidone tion of insulin is (B) Pyridine-3-carboxylic acid (A) Copper (B) Zinc (C) 3-Hydroxy-4, 5-dihydroxymethyl1-2-methyl (C) Cobalt (D) Manganese pyridine (D) δ-ALA dehydratase 183. An important zinc containing enzyme is 174. For an adult male daily requirement of (A) Carboxypeptidase A iodine is (B) Isocitrate dehydrogenase (A) 25–50 μg (B) 50–100 μg (C) Cholinesterate (C) 100-150 μg (D) 200-250 μg (D) Lipoprotein lipase 175. Recommended daily intake of fluoride for a normal adult is defective absorption of (A) 1.5-4.0 mg (B) 0-1 mg(B) Molybdenum (A) Manganese (D) 10-20 mg (C) 5-10 mg(C) Iodine (D) Zinc 176. The percentage of fluoride present in 185. Hypogonadism develops due to deficiency normal bone is of

- (A) 0.01-0.03
- (B) 0.04-0.08
- (C) 0.10-0.12
- (D) 0.15-0.2

177. The percentage of fluoride present in dental enamel is

- (A) 0.01-0.02
- (B) 0.05-0.10
- (C) 0.15-0.20
- (D) 0.20-0.40

178. Fluorosis occurs due to

- (A) Drinking water containing less than 0.2 ppm of fluorine
- Drinking water containing high calcium
- (C) Drinking water containing greater than 1.2 ppm of fluroine
- (D) Drinking water containing heavy metals

181. Metal required for polymerization of

184. Acrodermatitis enteropathica is due to

- (A) Sulphur
- (B) Cobalt
- (C) Zinc
- (D) Manganese

186. Psychotic symptoms and parkinsonism like symptoms develop due to inhalation poisoning of

- (A) Manganese
- (B) Phosphorous
- (C) Magnesium
- (D) Zinc

187. One gram of carbohydrate on complete oxidation in the body yields about

- (A) 1 Kcal
- (B) 4 Kcal
- (C) 6 Kcal
- (D) 9 Kcal

188.	One gram of fat on complete oxidation	199.	B.M.R. is subnormal in
	in the body yields about (A) 4 Kcal (B) 6 Kcal (C) 9 Kcal (D) 12 Kcal		(A) Addison's disease(B) Adrenal tumour(C) Cushing's syndrome
189.	One gram of protein on complete oxidation in the body yields about (A) 2 Kcal (B) 4 Kcal (C) 8 Kcal (D) 12 Kcal	200.	(D) Fever A healthy 70 kg man eats a well balanced diet containing adequate calories and 62.5 g of high quality protein per day. Measured in grams of nitrogen, his daily
190.	R.Q. of mixed diet is about (A) 0.70 (B) 0.80 (C) 0.85 (D) 1.0		(A) +10 g (B) +6.25 g (C) 0 g (D) -6.25 g
	R.Q. of proteins is about (A) 0.70 (B) 0.75 (C) 0.80 (D) 0.85 R.Q. of carbohydrates is about (A) 0.75 (B) 0.80	201.	The percentage of nitrogen retained in the body after absorption of diet represents (A) Digestibility coefficient of proteins (B) Biological value of proteins (C) Protein efficiency ratio (D) Net protein utilisation
193.	(C) 0.85 (D) 1.0 R.Q. of fats is about (A) 0.75 (B) 0.80 (C) 0.85 (D) 1.0	202.	In a person increase in weight in gms per gm of protein consumption represents (A) Protein efficiency ratio (B) Digestibility value of proteins
194.	Proteins have the SDA: (A) 5% (B) 10% (C) 20% (D) 30%	203.	 (C) Biological value of proteins (D) Net protein utilisation The percentage of food nitrogen that is retained in the body represents
195.	Humans most easily tolerate a lack of the nutrient: (A) Protein (B) Lipid (C) Iodine (D) Carbohydrate		 (A) Digestibility coefficient (B) Biological value of proteins (C) Protein efficiency ratio (D) Net protein utilisation
196.	The basal metabolic rate (B.M.R.) is measurement of	204.	The chemical score of different proteins is calculated in terms of
	 (A) Energy expenditure during sleep (B) Energy expenditure after 100 m walk (C) Energy expenditure after a meal (D) Energy expenditure under certain basal 		(A) Egg proteins (B) Milk proteins (C) Fish proteins (D) Wheat proteins Biological value of egg protein is (A) 94 (B) 60
197.	(Standard) conditions B.M.R. is raised in	206.	(C) 51 (D) 40 Biological value of protein of cow's milk is
	(A) Polycythemia (B) Starvation (C) Lipid nephrosis (D) Hypothyroidism	200.	(A) 95 (B) 60 (C) 71 (D) 67
198.	B.M.R. is lowered in (A) Hypothyroidism (B) Leukemia (C) Cardiac failure (D) Hyperthyroidism	207.	

208. Plasma bicarbonate is decreased in

- (A) Respiratory alkalosis
- (B) Respiratory acidosis
- (C) Metabolic alkalosis
- (D) Metabolic acidosis

209. Plasma bicarbonate is increased in

- (A) Respiratory alkalosis
- (B) Metabolic alkalosis
- (C) Respiratory acidosis
- (D) Metabolic acidosis

210. Total CO, is increased in

- (A) Respiratory acidosis
- (B) Metabolic alkalosis
- (C) Both respiratory acidosis and metabolic alkalosis
- (D) Respiratory alkalosis

211. Respiratory acidosis is caused by

- (A) Increase in carbonic acid relative to bicarbonate
- (B) Decrease in bicarbonate fraction
- (C) Increase in bicarbonate fraction
- (E) Decrease in the carbonic acid fraction

212. Respiratory alkalosis is caused by

- (A) An increase in carbonic acid fraction
- (B) A decrease in bicarbonic fraction
- (C) A decrease in the carbonic acid fraction
- (D) An increase in bicarbonate fraction

213. Meningitis and encephalitis cause

- (A) Metabolic alkalosis
- (B) Respiratory alkalosis
- (C) Metabolic acidosis
- (D) Respiratory acidosis

214. Metabolic acidosis is caused in

- (A) Uncontrolled diabetes with ketosis
- (B) Pneumonia
- (C) Intestinal Obstruction
- (D) Hepatic coma

215. Metabolic acidosis is caused in

- (A) Pneumonia
- (B) Prolonged starvation
- (C) Intestinal obstruction
- (D) Bulbar polio

216. Respiratory acidosis occurs in

- (A) Any disease which impairs respiration like emphysema
- (B) Renal disease
- (C) Poisoning by an acid
- (D) Pyloric stenosis

217. Metabolic alkalosis occurs

- (A) As consequence of high intestinal obstruction
- (B) In central nervous system disease
- (C) In diarrhoea
- (D) In colitis

218. Respiratory alkalosis occurs in

- (A) Hysterical hyperventilation
- (B) Depression of respiratory centre
- (C) Renal diseases
- (D) Loss of intestinal fluids

219. Morphine poisoning causes

- (A) Metabolic acidosis
- (B) Respiratory acidosis
- (C) Metabolic alkalosis
- (D) Respiratory alkalosis

220. Salicylate poisoning in early stages causes

- (A) Metabolic acidosis
- (B) Respiratory acidosis
- (C) Metabolic alkalosis
- (D) Respiratory alkalosis

221. The compound having the lowest redox potential amongst the following is

- (A) Hydrogen
- (B) NAD
- (C) Cytochrome b
- (D) Cytochrome a

222. All the oxidases contain a metal which is

- (A) Copper
- (B) FAD
- (C) Manganese
- (D) None of these

223. Isocitrate dehydrogenases is

- (A) Aerobic dehydrogenase
- (B) Anaerobic dehydrogenase
- (C) Hydroperoxidase
- (D) Oxygenase

224.	Iron-pophyrin is present as prosthetic		234.	The porphyrin present in haem is		
	group in (A) Cytochromes (C) Peroxidase	(B) Catalases (D) None of these	225	(A) Uroporphyrin (B) Protoporphyrin I (C) Coproporphyrin (D) Protoporphyrin II		
225.	Microsomal hydrox	xylase system contains	235.	An amino acid required for porphyrin synthesis is (A) Proline (B) Glycine		
	(A) Di-oxygenase (C) Both (A) and (B)	(B) Mono-oxygenase (D) None of thse	221	(C) Serine (D) Histidine		
226.	Superoxide radical	s can be detoxified by	236.	Which of the following coenzyme is required for porphyrin synthesis?		
	(A) Cytochrome c (C) Cytochrome a	(B) Cytochrome b (D) None of these		(A) Coenzyme A (B) Pyridoxal phosphate		
227.	A copper containin	g cytochrome is		(C) Both (A) and (B)		
	(A) Cytochrome a	(B) Cytochrome P-450		(D) None of these		
	(C) Cytochrome a ₃	(D) None of these	237.	The regulatory enzyme for haem		
228.	Rate of tissue respi	iration is raised when		synthesis is (A) ALA synthetase		
	(A) ADP increases	(B) ATP increases		(B) haem synthetase		
	(C) ADP decreases	(D) None of these		(C) Both (A) and (B)		
229.	Which of the follo	owing component of		(D) None of these		
		s not attached to the	238.	Regulation of haem synthesis occurs by (A) Covalent modification		
	(A) Coenzyme Q	(B) Cytochrome c		(B) Repression - derepression		
	(C) Both (A) and (B)	(D) None of these		(C) Induction		
230.		energy is captured in		(D) Allosteric regulation		
	the form of	(D) LITD	239.	Sigmoidal oxygen dissociation curve is a		
	(A) GTP (C) CTP	(B) UTP (D) None of these		property of		
231.	• •	hosphorylation occurs		(A) Haemoglobin (B) Carboxyhaemoglobin		
231.	in	nosphorylanon occors		(C) Myoglobin		
	(A) Glycolytic pathwa	y (B) Citric acid cycle		(D) Methaemoglobin		
	(C) Both (A) and (B)	(D) None of these	240.	Cyanmethaemoglobin can be formed		
232.		e may be detoxified in		from		
		exygen acceptor by		(A) Oxy Hb (B) Met Hb		
	(A) Peroxidase (C) Both (A) and (B)	(B) Catalase(D) None of these		(C) Carboxy Hb (D) All of these		
222		, ,	241.	In thalassemia, an amino acid is substituted in		
233.	(A) Cytochrome c	s can be detoxified by		(A) Alpha chain		
	(B) Superoxide dismu	ıtase		(B) Beta chain		
	(C) Both (A) and (B)			(C) Alpha and beta chains		
	(D) None of these			(D) Any chain		

Rotor's syndrome

Dubin-Johnson syndrome

(B) 2-4 mEq/L

(D) 4-5 mEq/L

(A) 2-4 mg/dl

(C) 4-5 mg/dl

242. Haem synthetase is congenitally deficient 249. Bilirubin UDP-glucuronyl transferase is absent from liver in (A) Congenital erythropoietic porphyria (A) Crigler-Najjar syndrome, type I Gilbert's disease (B) Protoporphyria Crigler-Najjar syndrome, type II (C) Hereditary coproporphyria (D) Rotor's syndrome (D) Variegate porphyria 250. Unconjugated bilirubin in serum is 243. During breakdown of haem, the methenyl soluble in bridge between the following two pyrrole rings is broken: (A) Water (B) Alkalis (D) Methanal (C) Acids (A) I and II (B) II and III (C) III and IV (D) IV and I 251. Excretion of conjugated bilirubin from liver cells into biliary canaliculi is defective in 244. Pre- hepatic jaundice occurs because of (A) Gilbert's disease (A) Increased haemolysis (B) Crigler-Najjar syndrome (B) Liver damage (C) Lucey-Driscoll syndrome (C) Biliary obstruction (D) Rotor's syndrome (D) None of these 252. Breakdown of 1gm haemoglobin pro-245. kernicterus can occur in duces (A) Haemolytic jaundice (A) 20 mg of bilirubin (B) 35 mg of bilirubin (B) Hepatic jaundice (C) 50 mg of bilirubin (D) 70 mg of bilirubin (C) Obstructive jaundice 253. Variable regions are present in (D) All of these (A) Immunoglobulins 246. Bile pigments are not present in urine in (B) α -Chains of T cell receptors (A) Haemolytic jaundice (C) β-Chains of T cell receptors (B) Hepatic jaundice (D) All of these (C) Obstructive jaundice 254. The total amount of calcium in an average Rotor's syndrome adult man is about (A) 100 gm 247. Serum alkaline phosphatase is greatly (B) 500 gm increased in (C) 1 kg (D) 10 kg (A) Haemolytic jaundice 255. The following proportion of the total body (B) Hepatic jaundice calcium is present in bones and teeth: (C) Obstructive jaundice (A) 75% (B) 90% None of these (C) 95% (D) 99% 248. The active transport system for hepatic 256. The normal range of plasma calcium is uptake of bilirubin is congenitally (A) 3-5 mg/dl (B) 5-10 mg/dl defective in (C) 9-11 mg/dl (D) 11-15 mg/dl (A) Gilbert's disease 257. Which of the normal range of ionized (B) Crigler-Najjar syndrome calcium in plasma is

266. Hypocalcaemia can occur in all the follow-258. Tetany can occur in ing except (A) Hypocalcaemia (A) Rickets Hypercalcaemia Osteomalacia (C) Alkalosis Hyperparathyroidism (D) Hypocalcaemia and alkalosis Intestinal malabsorption 259. Intestinal absorption of calcium occurs by 267. The major calcium salt in bones is (A) Active takeup (A) Calcium carbonate (B) Simple diffusion (B) Calcium chloride (C) Facilitated diffusion (C) Calcium hydroxide Endocytosis (D) Calcium phosphate 260. Intestinal absorption of calcium is hampered by 268. The correct statement about serum inorganic phosphorous concentration is (A) Phosphate (B) Phytate (A) It is higher in men than in women (D) Lactose (C) Proteins It is higher in women than in men 261. Calcitriol facilitates calcium absorption by It is higher in adults than in children increasing the synthesis of the following It is higher in children than in adults in intestinal mucosa: (A) Calcium Binding Protein 269. The product of serum calcium concentration (mg/dl) and serum inorganic phos-Alkaline Phosphatase phorous concentration (mg/dl) in adults Calcium-dependent ATPase is about (D) All of these (A) 30 (B) 40 262. A high plasma calcium level decreases (C) 50 (D) 60 intestinal absorption of calcium by 270. The product of serum calcium concentra-Stimulating the secretion of parathormone tion (mg/dl) and serum inorganic phos-Inhibiting the secretion of parathormone phorous concentration (mg/dl) in children Decreasing the synthesis of cholecalciferol is about (D) Inhibiting the secretion of thyrocalcitonin (A) 30 (B) 40 263. The daily calcium requirement of an adult (C) 50 (D) 60 man is about 271. The product of serum calcium concentration (A) 400 mg (B) 600 mg (mg/dl) and serum inorganic phosphorous (D) 1,000 mg (C) 800 mg concentration (mg/dl) is decreased in 264. The daily calcium requirement in preg-(A) Rickets nancy and lactation is about Hypoparathyroidism (A) 600 mg (B) 800 mg (C) Hyperparathyroidism (C) 1,200 mg (D) 1,500 mg (D) Renal failure 265. Hypercalcaemia can occur in all the fol-272. Serum inorganic phosphorous rises in all lowing except the following conditions except (A) Hyperparathyroidism (A) Hypoparathyroidism (B) Hypervitaminosis D Hypervitaminosis D (C) Milk alkali syndrome (C) Chronic renal failure

(D) After a carbohydrate-rich meal

(D) Nephrotic syndrome

273. Serum inorganic phosphorous decreases in all the following conditions except

- (A) Hyperparathyroidism
- (B) Intestinal malabsorption
- (C) Osteomalacia
- (D) Chronic renal failure

274. Serum magnesium level ranges between

- (A) 2-3 mg/dl
- (B) 3-5 mg/dl
- (C) 6-8 mg/dl
- (D) 9-11 mg/dl

275. Magnesium ions are required in the reactions involving

- (A) NAD
- (B) FAD
- (C) ATP
- (D) CoA

276. Normal range of serum sodium is

- (A) 30-70 mEq/L
- (B) 70-110 mEq/L
- (C) 117-135 mEq/L (D) 136-145 mEq/L
- (B) 70-110 mEq/L

277. Sodium is involved in the active uptake of

- (A) D-Glucose
- (B) D-Galactose
- (C) L-Amino acids
- (D) All of these

278. Aldosterone increases reabsorption of sodium in

- (A) Proximal convoluted tubules
- (B) Ascending limb of loop of Henle
- (C) Descending limb of loop of Henle
- (D) Distal convoluted tubules

279. Restriction of sodium intake is commonly advised in

- (A) Addison's disease (B) Diarrhoea
- (C) Hypertension (D) None of these

280. Serum sodium level rises in all of the following except

- (A) Renal failure
- (B) Prolonged steroid therapy
- (C) Aldosteronism
- (D) Dehydration

281. Hyponatraemia occurs in the following condition:

- (A) Addison's disease (B) Chronic renal failure
- (C) Severe diarrhoea (D) All of these

282. Serum potassium level decreases in

- (A) Familial periodic paralysis
- (B) Addison's disease
- (C) Renal failure
- (D) All of these

283. Concentration of the following is higher in intracellular fluid than in extracellular fluid:

- (A) Sodium
- (B) Potassium
- (C) Chloride
- (D) Bicarbonate

284. Normal range of serum potassium is

- (A) 2.1-3.4 mEg/L
- (B) 3.5-5.3 mEg/L
- (C) 5.4-7.4 mEg/L
 - (D) 7.5-9.5 mEq/L

285. Normal range of serum chloride is

- (A) 24-27 mEq/L
- (B) 70-80 mEq/L
- (C) 100-106 mEq/L (D) 120-140 mEq/L

286. An extracellular fluid having a higher concentration of chloride than serum is

- (A) Bile
- (B) Sweat
- (C) CSF
- (D) Pancreatic juice

287 Total amount of iron in an adult man is about

- (A) 1-2 gm
- (B) 2-3 gm
- (C) 3-4 gm
- (D) 6-7 gm

288. Haemoglobin contains about

- (A) 30% of the total body iron
- (B) 50% of the total body iron
- (C) 75% of the total body iron
- (D) 90% of the total body iron

289. About 5% of the total body, iron is present in

- (A) Transferrin
- (B) Myoglobin
- (C) Cytochromes
- (D) Haemosiderin

290. Each haemoglobin molecule contains

- (A) One iron atom
- (B) Two iron atoms
- (C) Four iron atoms
- (D) Six iron atoms

291. Each myoglobin molecule contains

- (A) One iron atom
- (B) Two iron atoms
- (C) Four iron atoms
- (D) Six iron atoms

292.	Apoferritin molecule is made up of				302.	Daily iron requirement of an adult man		
		Four subunits Ten subunits		Eight subunits Twenty-four subunits		is about (A) 1 mg	(B)	5 mg
293.		ritin is present i		.,,,		(C) 10 mg		18 mg
273.	(A)	Intestinal mucosa Spleen	(B)	Liver All of these	303.	reproductive	age is abo	
294.	Iror	n is stored in the	fo	rm of		(A) 1 mg (C) 10 mg		2 mg 20 mg
	(B) (C)	Ferritin and transfer Transferrin and ha Haemoglobin and Ferritin and haemo	iemo I my	osiderin oglobin	304.	All the follow except (A) Milk	ving are go	ood sources of iron
295.				blood in the form	305.	(C) Liver Relatively m	, ,	Kidney absorbed from
	(A) (C)	Ferritin Transferrin		Haemosiderin Haemoglobin		(A) Green lead(B) Fruits(C) Whole green	, ,	es
296.	Mol	lecular weight o	of tr	ansferrin is about		(D) Organ me		
		40,000 80,000		60,000 1,00,000	306.	Iron absorpti		mixed diet is about 5–10 %
297.	Normal plasma iron level is				(C) 20–25 %	, ,	25–50 %	
		50100 μg/dl 50175 μg/dl		100150 μg/dl 250400 μg/dl	307.	Iron deficien	cy causes	
298.	Iron is present in all the following except					(A) Normocyt(B) Microcytic		
	٠,	Peroxidase Aconitase	. ,	Xanthine oxidase Fumarase			astic anaemi	ia
299.	Total daily iron loss of an adult man is about			308.	Prolonged and severe iron deficiency cause astrophy of epithelium of			
		0.1 mg 5 mg		1 mg 10 mg		(A) Oral cavit (C) Stomach	y (B)	Oesophagus All of these
300.	Iror	absorption is l	nam	pered by	309.	All of the fo	ollowing s	statements about
		Ascorbic acid Phytic acid	\ /	Succinic acid Amino acid		bronzed dial	betes are t	
301.	Iron absorption is hampered by					mes pigment		
	(A) In achlorhydria(B) When ferritin content of intestinal mucosa is				(C) There is da(D) Liver is da	•	ls of Islets of Langerhans	
	(C)	low When saturation of plasma transferring is low			310.	an average (adult is	line in the body of
	(D)	When erythropoie	etic c	activity is increased		(A) 10–15 mg (C) 45–50 mg		20-25 mg 75-100 mg

311. Iodine content of thyroid gland in an adult is about

- (A) 1-3 mg
- (B) 4-8 mg
- (C) 10-15 mg
- (D) 25-30 mg

312. Daily iodine requirement of an adult is about

- (A) 50 μg
- (B) 100 μg
- (C) 150 μg
- (D) 1 mg

313. Consumption of iodised salt is recommended in

- (A) Patients with hyperthyroidism
- (B) Patients with hypothyroidism
- Pregnant women
- Goitre belt areas

314. All the following statements about endemic goiter are true except

- (A) It occurs in areas where soil and water have low iodine content
- (B) It leads to enlargement of thyroid gland
- (C) It results ultimately in hyperthyroidism
- (D) It can be prevented by consumption of iodised salt

315. The total amount of copper in the body of an average adult is

- (A) 1 gm
- (B) 500 mg
- (C) 100 mg
- (D) 10 mg

316. The normal range of plasma copper is

- (A) 25-50 μg/dl
- (B) 50-100 ua/dl
- (C) 100-200 µg/dl (D) 200-400 µg/dl

317. Copper deficiency can cause

- (A) Polycythaemia
- (B) Leukocytopenia
- (C) Thrombocytopenia (D) Microcytic anaemia

318. Daily requirement of copper in adults is about

- (A) 0.5 mg
- (B) 1 mg
- (C) 2.5 mg
- (D) 5 mg

319. All the following statements about ceruloplasmin are correct except

- (A) It is a copper-containing protein
- (B) It possesses oxidase activity
- (C) It is synthesised in intestinal mucosa
- (D) Its plasma level is decreased in Wilson's disease

320. All the following statements about Wilson's disease are correct except

- (A) It is a genetic disease
- The defect involves copper-dependent P-type
- (C) Copper is deposited in liver, basal ganglia and around cornea
- (D) Plasma copper level is increased in it

321. Which of the following statements about Menke's disease are true.

- (A) It is an inherited disorder of copper metabolism
- (B) It occurs only in males
- (C) Plasma copper is increased in it
- (D) Hair becomes steely and kinky in it

322. The total amount of zinc in an average adult is

- (A) 0.25-0.5 gm
- (B) 0.5-1.0 gm
- (C) 1.5-2.0 gm
- (D) 2.5-5.0 gm

323. Plasma zinc level is

- (A) 10-50 µg/dl
- (B) $50-150 \,\mu g/dl$
- (C) $150-250 \,\mu\text{g/dl}$ (D) $250-500 \,\mu\text{g/dl}$

324. Zinc is a cofactor for

- (A) Acid phosphatase
- (B) Alkaline phosphatase
- (C) Amylase
- (D) Lipase

325. Zinc is involved in storage and release of

- (A) Histamine
- (B) Acetylcholine
- (C) Epinephrine
- (D) Insulin

326. Intestinal absorption of zinc is retarded by

- (A) Calcium
- (B) Cadmium
- (C) Phytate
- (D) All of these

327. The daily zinc requirement of an average adult is

- (A) 5 mg
- (B) 10 mg
- (C) 15 mg
- (D) 25 mg

328. Zinc deficiency occurs commonly in

- (A) Acrodermatitis enteropathica
- (B) Wilson's disease
- (C) Xeroderma pigmentosum
- (D) Menke's disease

329.	. Hypogonadism can occur in deficiency of		340.	1 k	cal is roughly	l to		
	(A) Copper (C) Zinc	(B) Chromium(D) Manganese			4.2 J 4.2 KJ		42 J 42 KJ	
330.	deficiency of	unds may be impaired in		Calorific value of proteins as determined in a bomb calorimeter is			ıed	
	(A) Selenium (C) Zinc	(B) Copper (D) Cobalt		, ,	4 kcal/gm 5.4 kcal/gm	, ,		
331.	occur in	rocytic anaemia can	342.	Cal	orific value of	prote	eins in a living p	
	(A) Zinc (C) Manganese	(B) Copper(D) None of these		ter	because		a bomb calorin	
332.	The daily requirem adults is about	ent for manganese in			than 100%		tion of proteins is	
	(A) 1-2 mg (C) 2-5 μg	(B) 2-5 mg (D) 5-20 μg		(C)	Specific dynam	ic actio	f proteins is less that on of proteins is hig	gh
333.	Molybdenum is a c			(D)	Proteins are not persons	compl	etely oxidized in liv	/ing
	(A) Xanthine oxidase(C) Sulphite oxidase	(B) Aldehyde oxidase(D) All of these	343.	Cal	orific value of	alcoh	nol is	
334.	A trace element function is	having antioxidant			4 kcal/gm 7 kcal/gm		•	
	(A) Selenium (C) Chromium	(B) Tocopherol(D) Molybdenum	344.		ergy expendit asured by	ure o	f a person can	be
335.	Selenium is a const			(A)	Bomb calorimet	ry		
	(A) Glutathione reduc(B) Glutathione perox(C) Catalase(D) Superoxide dismu		(C)	Direct calorimet Indirect calorim Direct or indirect	etry	imetry		
336.	Selenium decreases the requirement of			Respiratory quotient of carbohydrates is				
	(A) Copper	(B) Zinc		abo		(D)	0.7	
	(C) Vitamin D	(D) Vitamin E			0.5 0.8		0. <i>7</i> 1.0	
337.	37. Upper safe limit of fluorine in water is		346.				of fats is about	
	, ,	(B) 0.8 ppm	0-10.		0.5		0.7	
220	(C) 1.2 ppm	e intake should not			0.8		1.0	
336.	exceed	e illiake silodia ildi	347.	Res	piratory quot	ient o	f proteins is ab	out
	(A) 0.5 mg	(B) 1 mg			0.5		0.7	
	(C) 2 mg	(D) 3 mg		(C)	0.8	(D)	1.0	
339.	In adults, water constitutes about (A) 50% of body weight			Respiratory quotient of diet is about			an average mix	ced
	(B) 55% of body weig (C) 60% of body weig				0.65	(B)	0.7	
	(D) 75% of body weight			(C)	0.75	(D)	0.85	

349. At a respiratory quotient of 0.85 litre of oxygen consumed repres energy expenditure of		ned represents an	359.	exc	All following are essential trace elements except				
	(A)	5.825 kcal	(B)	4.825 kcal 2.825 kcal		(C)	Iron Zinc	(D)	lodine Cadmium
350.		R of healthy adu	ılt r	nen is about	360.	Maximum quantity of sodium is excreted through			
	(B)	30 kcal/hour/squ 35 kcal/hour/squ 40 kcal/hour/squ	are	metre			Urine Sweat		Faeces None of these
		45 kcal/hour/squ			361.		followings of gnesium, excep		rich sources of
351.		IR of healthy ad 32 kcal/hour/squ		women is about		(A)	Milk Meat	(B)	Eggs Cabbage
	(C)	36 kcal/hour/squ 40 kcal/hour/squ 44 kcal/hour/squ	are	metre	362.	exc	ept	-	or sources of iron
352.		R is higher in	arc	mene			Milk Wheat flour		Potatoes Liver
	(A) (B)	A) Adults than in children B) Men than in women			363.	The	The Iron deficient children, absorption o Iron from GIT is		
353.	(D)	Warmer climate th	an i	•		(B)	Unaltered Double than in no Manifold than in		
000.		Pregnancy	-	Starvation		. ,	Lesser than in nor		
	` '		(D)	Fever	364.		in source of fluc	oride	for human beings
354.		R is increased in	(D)	The college of the co		is (A)	Milk	(R)	Water
	٠,	Starvation Addison's disease		Hypothyroidism Pregnancy			Vegetables		Eggs
355.	BMR is decreased in all of the following except			365.		Quantity of copper present in the body of an adult is			
		Fever Starvation		Addison's disease Hypothyroidism			0-50 mg 100-150 mg		50-100 mg 150-250 mg
356.	6. BMR is increased in all of the following except		366.		evel of 310–34 od is normal fo		g per 1000 ml of		
		Hyperthyroidism Addison's disease		Anaemia Pregnancy			Copper Potassium		Iron Sodium
357.	Specific dynamic action of carbohydrates is about			367.		Daily requirement of phosphorous for infant is			
		5% 20%		13% 30%			240-400 mg 800 mg		1.2 gms 800-1200 mg
358.	Spe	-	acti	on of proteins is	368.		ximum quantit body in	y of	Zinc is present in
	(A) (C)	5%		13% 30%			Prostate Skin		Choroid Bones

369.	Average concentration of chloride ions in cerebrospinal fluid per 100 ml is			A deficiency of copper effects the formation of normal collagen by reducing the activity			
	(A) 40 mg	(B) 440 mg		of which of the following enzyme?			
	(C) 160 mg	(D) 365 mg		(A) Prolyl hydroxylase			
370.	Total iron content	of the normal adult is		(B) Lysyl oxidase			
	(A) 1-2 gm	(B) 3-4 gm		(C) Lysyl hydroxylase			
	(C) 4-5 gm	(D) 7-10 gm		(D) Glucosyl transferase			
371.	Absorption of ph	osphorous from diet is	379.	Molecular iron (Fe) is			
	favoured by	•		(A) Stored primarily in spleen			
	(A) Moderate amou	int of fat		(B) Absorbed in the intestine			
	(B) Acidic environm	ent		(C) Absorbed in the ferric, Fe+++ form			
	(C) High calcium co	ntent		(D) Stored in the body in combination with ferriting			
	(D) High phytic acid		380.	All the following statements regarding			
372. Daily intake of potassium for a norma		otassium for a normal		calcium are correct except			
	person should be			(A) It diffuses as a divalent cation			
	(A) 1 gm (C) 3 gm	(B) 2 gm (D) 4 gm		(B) It freely diffuses across the endoplasmic reticulum of muscle cells			
373.	Absorption of cal	cium decreases if there		(C) It can exist in the blood as ionic form and also protein bound			
	is high concentrat			(D) It is found in high concentration in bones			
	(A) Copper (C) Magnesium	(B) Sodium (D) Cadmium	381.				
074	, ,	• •		(A) Stomach			
3/4.	calcium is seen in	nighest concentration of		(B) Duodenum and jejunum			
	(A) Blood	(B) CSF		(C) Ileum			
	(C) Muscle	(D) Nerve		(D) Noen of the above			
275		• •	382	The normal route of calcium excretion is			
3/3.	Cobalt is essentia	-	562.				
	(A) Vitamin B ₁	(B) Vitamin B ₆		(A) Kidney (B) Kidney and Liver			
		(D) All of these		(C) Kidney and Intestine			
376.	lodine is required	in human body for		(D) Kidney, Intestine and Pancreas			
	(A) Formation of thy			, ,			
	(B) Formation of Glu		383.	Hypocalcaemia affects			
	(C) Formation of pot	tassium iodide		(A) Skeletal muslces			
	(D) Adrenalin			(B) Smooth muscles			
377.		ecrocytic anaemia with		(C) Cardiac muscles			
	increase Fe store may be	s in the bone marrow		(D) Skeletal muscles + smooth muscles + cardiac muscles			
	(A) Folic acid respon	nsive	20/	Transferrin is a type of			
	(B) Vitamin B ₁₂ resp		J04.	• • • • • • • • • • • • • • • • • • •			
	(C) Pyridoxine respo			(A) Albumin (B) α-globulin			
	(D) Vitamin C respo			(C) β_1 globulin (D) γ -globulin			

(A) Copper

(C) Manganese

(B) Iron

(D) Chromium

385. In case of wilson's disease, the features 393. Which of the following is true? Hypochroinclude all of the following except mic anaemia is not due to iron deficiency except (A) Progressive hepatic cirrhosis (A) Serum 'Fe' is high (B) Keyser Fleisher ring (C) Aminoaciduria (B) Normal/low transferrin (D) Urinary excretion of Cu is decreased (C) Stainable iron in bone marrow (D) Iron therapy is affective 386. In Vitamin D poisoning (hyper-vitaminosis) 394. Cytosolic superoxide dismutase contains (A) Both serum and urinary "Ca" (B) The serum Ca is low and urinary calcium high (A) Zn only (B) Cu only (C) The serum "Ca" is increased and urinary (C) Zn and Cu (D) Mn 395. A rise in blood 'Ca' may indicate (D) Both serum and urinary "Ca" are low (A) Paget's disease (B) Vitamin D deficiency 387. The % of 'K' in Extracellular fluid is about (C) Cushing's disease (D) Hypervitaminosis D (B) 2 to 3% 396. The essential trace element which cata-(C) 10% (D) 15% lyzes the formation of Hb in the body is 388. The Fe containing pigments is (A) Mn (B) Se Haematoidin (B) Bilirubin (D) Cu (C) Mg (D) Urobilinogen Hemasiderin 397. Zinc is a constituent of the enzyme: 389. All of the following are true of Wilson's (A) Succinate dehydrogenase disease except (B) Carbonic anhydrase (A) Low total plasma Cu (C) Mitochondrial superoxide dismutase (B) Elevated urinary copper (D) Aldolase (C) Arthritis (D) Aminoaciduria 398. The active transport of 'Ca' is regulated by which is synthesized in 390. An increased serum 'Iron' and decreased kidnyes. 'Fe' binding capacity are found in (A) Cholecalciferol (A) Fe-deficiency anaemia (B) Ergosterol (B) Sideroblastic anaemia (C) 25-OH cholecalciferol (C) Thalassaemia (D) 1, 25-di OH-Cholecalciferol (D) Anaemia of chromic disorders 399. Ceruloplasmin shows the activity 391. Iron therapy is ineffective in which of the following conditions: (A) As ferroxidase (B) As reductase (C) As ligase (D) As transferase (A) Chronic blood loss (B) Inadequate Fe intake 400. The principal cation of extra cellular fluid: (C) Hypochromic anaemia of pregnancy (A) K+ (B) Na+ (D) Thalassaemia minor (D) Ca2+ (C) H+ 392. In hoemochromatosis, the liver is infiltrat-401. What is the principal cation of intracellular ed with fluid?

(A) K+

(C) Ca²⁺

(B) Na+

(D) Ma²⁺

(204) MCQs IN BIOCHEMISTRY

402. What is the normal level of K⁺ in the serum?

- (A) 137-148 mEq/L (B) 120-160 mEq/L
- (C) 3.9-5.0 mEg/L (D) 0.3-0.59 mEg/L

403. The general functions of minerals are

- (A) The structural components of body tissues
- (B) In the regulation of body fluids
- (C) In acid-base balance
- (D) All of these

404. What are the functions of potassium?

- (A) In muscle contraction
- (B) Cell membrane function
- Enzyme action
- (D) All of these

405. The daily requirement of calcium is

- (A) 200 mg
- (B) 400 mg
- (C) 800 mg
- (D) 600 mg

406. The normal serum inorganic phosphorous

- (A) 1.5-2.5 mg/100 ml
- (B) 2.5-4.5 mg/100 ml
- (C) 4.5-6.5 mg/100 ml
- (D) 0.5-1.5 mg/100 ml

407. When phosphorous level is lowered?

- (A) In hyper thyroidism (B) Cirrosis of liver
- (C) Leukemia
- (D) Hypothyroidism

408. Ferritin is

- (A) Coenzyme
- (B) One of the component of photophosphorylation

- (C) It is the stored form of iron
- (D) Non-protein moiety

409. What is ceruloplasmin?

- (A) Plasma protein
- (B) Stored form of copper
- (C) Both A and B
- (D) None of these

410. The following are the functions of copper:

- (A) Constituent of cytochromes
- Catalase (B)
- (C) Tyrosinase
- (D) All of these

411. Zn is present as prosthetic group in this enzyme:

- (A) Carbonic anhydrase
- (B) Carboxy peptidase
- (C) Lactate dehydrogenase
- (D) All of these

412. Fluorosis is caused due to

- (A) Excessive intake of fluorine
- (B) Low intake of fluorine
- (C) Discoloration of the teeth due to low intake
- (D) All of these

413. What is the state of iron in transferrin?

- (A) Ferrous form
- (B) Ferric form
- (C) Both A and B
- (D) None of these

414. Haemoglobin formation needs both

- (A) Iron and Zinc
- (B) Iron and Calcium
- (C) Iron and Copper (D) Iron and Magnesium

	$\overline{}$	$\overline{}$	
_	00	· – i	_
(71	רו	
`		\sim	

ANSWERS					
1. A	2. C	3. C	4. A	5. B	6. B
7. C	8. B	9. C	10. D	11. C	12. C
13. B	14. A	15. B	16. A	1 <i>7</i> . B	18. D
19. D	20. A	21. A	22. A	23. C	24. B
25. C	26. C	27. A	28. C	29. C	30. A
31. D	32. A	33. D	34. A	35. B	36. D
37. B	38. C	39. A	40. A	41.B	42. A
43. D	44. A	45. B	46. A	47. A	48. D
49. D	50. A	51. D	52. A	53. A	54. A
55. D	56. B	57. B	58. A	59. C	60. D
61. A	62. D	63. D	64. D	65.B	66. D
67. D	68. D	69. C	70. D	71. A	72. B
73. C	74. D	<i>7</i> 5. D	76. B	77. A	78. C
79. A	80. D	81. A	82. A	83. C	84. A
85. C	86. D	87. A	88. C	89. D	90. D
91. C	92. B	93. D	94. C	95. B	96. C
97. B	98. A	99. D	100. A	101. C	102. A
103. B	104. B	105. A	106. D	107. C	108. B
109. A	110. D	111. C	112. D	113. A	114. B
115. A	116. A	117. D	118. A	119. D	120. D
121.B	122. A	123. A	124. B	125. A	126. A
127. A	128. C	129. A	130. A	131.B	132. C
133. D	134. C	135. C	136. C	137. A	138. B
139. A	140. B	141. A	142. D	143. C	144. C
145. D	146. D	147. B	148. D	149. C	150. D
151. C	152. C	153. B	154. D	155. A	156. C
1 <i>57</i> . D	158. B	159. A	160. D	161. C	162. D
163. A	164. C	165. C	166. A	167. A	168. D
169. A	170. D	171. A	172. A	173. A	174. A
175. B	176. A	177. A	178. C	179. A	180. C
181. D	182. B	183. A	184. D	185. C	186. A
187. B	188. C	189. B	190. C	191. C	192. D
193. A	194. D	195. D	196. D	197. A	198. A
199. A	200. C	201. B	202. A	203. D	204. A
205. A	206. B	207. C	208. D	209. B	210. C
211. A	212. C	213. B	214. A	215. B	216. A
217. A	218. A	219. B	220. D	221. A	222. A
223. B	224. D	225. B	226. A	227. C	228. A
229. C	230. A	231. C	232. B	233. C	234. D
235. A	236. C	237. A	238. B	239. A	240. B
241. D	242. B	243. A	244. A	245. A	246. A
247. C	248. A	249. A	250. D	251. D	252. B

(206) MCQs IN BIOCHEMISTRY

253. D	254. C	255. D	256. C	257. C	258. D
259. A	260. B	261. D	262. B	263. C	264. C
265. D	266. C	267. D	268. D	269. A	270. C
271. A	272. D	273. D	274. A	275. C	276. D
277. D	278. D	279. C	280. A	281. D	282. A
283. B	284. B	285. C	286. C	287. C	288. C
289. B	290. C	291. A	292. D	293. D	294. D
295. C	296. C	297. C	298. D	299. B	300. C
301. A	302. C	303. D	304. A	305. D	306. B
307. B	308. D	309. A	310. C	311. C	312. C
313. D	314. C	315. C	316. C	317. D	318. C
319. C	320. D	321. C	322. C	323.B	324. B
325. D	326. D	327. C	328. D	329. C	330. C
331.B	332. B	333. D	334. A	335. B	336. D
337. C	338. D	339. C	340. C	341. C	342. D
343. C	344. D	345. D	346. B	347. C	348. D
349. B	350. C	351.B	352. B	353. B	354. D
355. A	356. C	357. A	358. D	359. D	360. A
361. C	362. D	363.B	364. B	365. C	366. D
367. A	368. C	369. B	370. C	371.B	372. D
373. C	374. C	375. C	376. A	377. C	378.B
379. D	380. B	381.B	382. C	383. D	384. B
385. D	386. A	387. A	388. C	389. C	390. B
391. D	392. B	393. D	394. C	395. D	396. D
397. B	398. D	399. A	400. B	401. A	402. C
403. D	404. D	405. C	406. B	407. A	408. C
409. C	410. D	411. D	412. A	413.B	414. C

CHAPTER 8

HORMONE METABOLISM

6. The number of amino acids in human

(C) Prolactin release inhibiting hormone

10. The number of amino acids in prolactin is

11. Adrenocorticotropic hormone (ACTH) is a

single polypeptide containing

(B) 146

(D) 199

(B) 39 amino acid

(D) 52 amino acid

(D) Luteinizing releasing hormone

(A) 134

(C) 172

(A) 25 amino acid

(C) 49 amino acid

growth hormone is

	(B) (C)	Act as enzyme Influence synthesis of enzymes		(A) (C)	91 191	(B) (D)	151 291
2.	Hor	Belong to B-complex group rmone that binds to intracellular eptor is	7.	It is	a result of Decreased	; peripheral	utilization of glucose
	(A) (B) (C) (D)	Adrenocorticotropic hormone Thyroxine Follicle stimulating hormone Glucagon		(B) (C) (D)	genesis Increased g Decrersed li	lycolysis in	oduction via gluconeo ı muscle
3.		mone that bind to cell surface receptor I require the second messenger camp	8.		omegaly ease of	results	due to excessive
	is (A)	Antidiuretic hormone		(A) (C)	Thyroxine Insulin	(B) (D)	Growth hormone Glucagon
	(B) (C) (D)	Cholecystokinin Calcitriol Gastrin	9.	(A) (B)	Somatostation	n	leased by

1. Hormones

is

is

(C) Oxytocin

(A) Vasopressin

(C) Prolactin

(B) Thyrotropic hormone

(D) Adrenocorticotropic hormone

(A) Act as coenzyme

4. A hormone secreted from anterior pituitary

5. A hormone secreted from posterior pituitary

(D) Epinephrine

(A) Growth hormone (B) Vasopressin

12. Biological activity of ACTH requires

- (A) 10-N-terminal amino acid
- (B) 24-N-terminal amino acid
- (C) 24-C-terminal amino acid
- (D) 15-C-terminal amino acid

13. ACTH stimulates the secretion of

- (A) Glucocorticoids
- (B) Epinephrine
- (C) Thyroxine
- (D) Luteinizing hormone

14. Excessive secretion of ACTH causes

- (A) Cushina's syndrome
- (B) Addison's disease
- (C) Myxoedema
- (D) Thyrotoxicosis

15. In Cushing's syndrome-a tumour associated disease of adrenal cortex, there is

- (A) Decreased epinephrine production
- (B) Excessive cortisol production
- Excessive epinephrine production
- (D) Decreased cortsoil production

16. ACTH induces rise in

- (A) Cyclic AMP
- (B) Cyclic GMP
- (C) Calcium
- (D) Magnesium

17. The circulating concentration of ACTH in plasma is

- (A) $0.05 \,\mathrm{m}\,\mu/100 \,\mathrm{ml}$
- (B) $0.1-2.0 \text{ m} \mu/100 \text{ ml}$
- (C) $2.5-3.5 \,\mathrm{m}\,\mu/100 \,\mathrm{ml}$
- (D) $3.0-5.0 \, \text{m} \, \mu / 100 \, \text{ml}$

18. Hyperglycemic effect of glucocorticoids is due to

- (A) Inactivation of protein phosphatase
- (B) Inactivation of fructose 1,6-biphosphatase
- Stimulation of synthesis of pyruvate carboxylase
- Stimulation of synthesis of eltroxykinase

19. The predominant glucocorticoid is

- (A) Cortisol
- (B) Aldosterone
- (C) Dehydroephiandrosterone
- (D) Androstenedione

20. A specific cortisol binding protein, transcortin is a

- (A) Albumin
- (B) α₁-Globulin
- (C) α₂-Globulin
- (D) β-Globulin

21. Cortisol is synthesized in

- (A) Zona fasiculata
- (B) Zona glomerulosa
- Zona reticularis
- (D) Chromaffin cells

22. All mammalian steroid hormones are formed from

- (A) Purine
- (B) Pyrimidine
- Cholesterol
- (D) Pyrrole

23. A very efficient inhibitor of steroid biosynthesis is

- (A) Aminoglutethimide
- Aminoimidazole
- Aminoimidazolesuccinyl carboxamine
- Aminopterin

24. In adrenal gland the cholesterol is stored

- (A) Mostly in the free form
- (B) Mostly in esterified form
- (C) Large amount of free form and less amount of esterified form
- Equal amounts of free and esterified form

25. Aldosterone synthesis occurs in

- (A) Zona reticularis (B) Zona fasciculata
- (C) Zona glomerulosa (D) Chromaffian cells

26. In the biosynthesis of cortiol, the sequence of enzymes involved is

- Hydroxylase-dehydrogenase + isomerase hydroxylase
- Dehydrogenase-hydroxylase-isomerase
- (C) Hydroxylase-lyase-dehydrogenase isomerase
- (D) Isomerase-lyase-hydroxylase-dehydrogenase

27. The defect in adrenal cortex responsible for lack of glucocorticoids and mineralcorticoids is

- (A) Androstenedione deficiency
- 17 α-OH progesterone deficiency
- C-21 hydroxylase deficiency
- (D) Testosterone deficiency

28. 3-β-Hydroxysteroid dehydrogenase and $\Delta^{5,4}$ isomerase catalyse the conversion of the weak androgen DHEA to

- (A) Androstenedione (B) Testosterone
- (C) Progesterone
- (D) Estrone

29. In the resting state plasma concentration of cortisol is

- (A) 0.4–2.0 μg/100 ml
- (B) 2.0-4.0 μg/100 ml
- (C) 5.0-15.0 μg/100 ml
- (D) 18.0-25.0 μg/100 ml

30. The most important effect of aldosterone

- (A) Increase the rate of tubular reabsorption of
- Decrease the rate of tubular reabsorption of potassium
- Decrease the reabsorption of chloride
- (D) Decrease the renal reabsorption of sodium

31. One of the potent stimulators of aldosterone secretion is

- (A) Increased sodium concentration
- Decreased potassium concentration
- (C) Increased potassium concentration
- Increased ECF volume

32. In the rennin-angiotensin system the primary hormone is

- (A) Angiotensinogen (B) Angiotensin I
- (C) Angiotensin II
- (D) Angiotensin III

33. Aldosterone release is stimulated by

- (A) α_2 -Globulin
- (B) Renin
- (C) Angiotensin II
- (D) Growth hormone

34. In the synthesis of Angiotensin I, rennin acts on Angiotensinogen and cleaves the

- (A) Leucine leucine at 10 and 11 position
- (B) Valine tyrosine at 3 and 4 position
- (C) Isoleucine histidine at 5 and 6 position
- (D) Proline histidine at 7 and 8 position

35. Catecholamine hormones are synthesized in the

- (A) Chromaffin cells of adrenal medulla
- Zona alomerulosa of adrenal cortex
- Zona fasciculate of adrenal cortex
- (D) Zona reticularis of adrenal cortex

36. Catecholamine hormones are

- (A) 3, 4-Dihydroxy derivatives of phenylethylamine
- p-Hydroxy derivatives of phenylacetate
- p-Hydroxy derivatives of phenylpyruvate
- p-Hydroxy derivatives of phenyllactate

37. The sequential steps in the conversion of tyrosine to epinephrine are

- Ring hydroxylation-decarboxylation-side chain hydroxylation-N-methylation
- Side chain hydroxylation-decarboxylation-ring hydroxylation N-methylation
- Decarboxylation-ring hydroxylation-side chain hydroxylation-N-methylation
- N-methylation-decarboxylation-ring and side chain hydroxylation

38. The hormone required for uterine muscle contraction for child birth is

- (A) Progesterone
- (B) Estrogen
- Oxytocin
- (D) Vasopressin

39. The number of amino acids in the hormone oxytocin is

- (A) 7
- (B) 9
- (C) 14
- (D) 18

40. Vasopressin and oxytocin circulate unbound to proteins and have very short plasma half lives, on the order of

- (A) 1-2 minutes
- (B) 2-4 minutes
- (C) 5-8 minutes
- (D) 10-12 minutes

41. Melanogenesis is stimulated by

- (A) MSH
- (B) FSH
- (C) LH
- (D) HCG

42. The number of amino acids in antidiuretic hormone is

- (A) 9
- (B) 18
- (C) 27
- (D) 36

43. ADH

- (A) Reabsorbs water from renal tubules
- (B) Excretes water from renal tubules
- (C) Excretes hypotonic urine
- Causes low specific gravity of urine

(210) MCQs IN BIOCHEMISTRY

44. Increased reabsorption of water from the kidney is the major consequence of the secretion of the hormone?

- (A) Cortisol
- (B) Insulin
- (C) Vasopressin
- (D) Aldosterone

45. An increase in the osmolality of extracel**lular compartment will**

- (A) Inhibit ADH secretion
- Stimulate ADH secretion
- (C) Cause no change in ADH secretion
- (D) Stimulate the volume and osmoreceptor and inhibit ADH secretion

46. For Catecholamine biosynthesis the rate limiting enzyme is

- (A) DOPA decarboxylase
- (B) DOPAMINE β-hydroxylase
- (C) Tyrosine hydroxylase
- (D) Phenylalanine hydroxylase

47. A hormone which cannot cross the blood brain barrier is

- (A) Epinephrine
- (B) Aldosterone
- (C) ACTH
- (D) TSH

48. The plasma level of epinephrine is less

- (A) 0.1 ng/ml
- (B) 0.2 ng/ml
- (C) 0.4 ng/ml
- (D) 0.8 ng/ml

49. Epinephrine is rapidly metabolized by

- (A) Monoamine oxidase
- Deaminase
- (C) Transminase
- Decarboxylase

50. Pheochromocytomas are tumours of

- (A) Adrenal cortex
- (B) Adrenal medulla
- (C) Pancreas
- (D) Bone

51. A characteristic of pheochromocytoma is elevated urinary excretion of

- (A) Dopamine
- (B) Tyrosine
- (C) Vinylmandelic acid
- (D) Phenylalanine

52. In the synthetic pathway of epinephrine, disulfiram (antabuse) inhibits the enzyme:

- (A) Tyrosine hydroxylase
- Dopamine β-hydroxylase
- DOPA decarboxylase
- (D) N-methyl transferase

53. The biosynthesis of both Catecholamine and serotonin require

- (A) Tyrosine hydroxylase
- (B) N-methyl transferase
- (C) Aromatic amino acid decarboxylase
- (D) Tryptophan pyrrolase

54. Epinephrine stimulates glycogenolysis in

- (A) Liver
- (B) Muscle
- (C) Liver and muscle (D) Kidney

55. A cup of strong coffee would be expected

- (A) Interfere with the synthesis of prostaglandins
- (B) Decrease the effect of glucagon
- (C) Enhance the effect of epinephrine
- (D) Provide the vitamin nicotinic acid

56. Epinephrine is derived from norepinephrine by

- (A) Decarboxylation
- (B) Hydroxylation
- (C) Oxidation
- (D) N-methylation

57. 5 HIAA test is negative if patient is taking

- (A) Aspirin
- (B) Colchicine
- (C) Phenothiazone
- (D) Methotrexate

58. Presence of significant amount of 5-HIAA in urine indicates

- (A) Carcinoid in liver
- Carcinoid in appendix
- (C) Metastasis of carcinoma of liver
- (D) Hepatoma

59. The normal serum level of triiodothyronine (T₃) is

- (A) 0.2-0.5 ng/ml
- (B) 0.7-2.0 ng/ml
- (C) 2.0-4.0 ng/ml
- (D) $5.0-8.0 \, \text{ng/ml}$

60.	The normal serum level of thyroxine (T ₄) is	69.	TSH stimulates the synthesis delete
			(A) Thyroxine (B) Adrenocorticoids
	(A) 2.0-4.0 μg/100 ml (B) 5.5-13.5 μg/100 ml		(C) Epinephrine (D) Insulin
	(C) 14.0–20.3 μg/100 ml (D) 20.0–25.0 μg/100 ml	70.	Thyroid hormones are synthesized by the iodination of the amino acid:
	, ,		(A) Glycine (B) Phenylalanine
61.	Excess secretion of thyroid hormones causes		(C) Alanine (D) Tyrosine
	(A) Hyperthyroidism (B) Myxoedema (C) Cretinism (D) Cushing syndrome	71.	The tyrosine residues per molecule of thyroglobulin is
62.	Insufficient free T ₃ and T ₄ results in		(A) 85 (B) 95
02.	(A) Grave's disease (B) Mysoedema		(C) 115 (D) 135
	(C) Cushing syndrome (D) Gigantism	72.	The percentage of inactive precursors
63.	In primary hypothyroidism the useful estimation is of		(monoidotyrosine and diiodotyrosine) ir thyroglobulin is
	(A) T_3 (B) T_4		(A) 30 (B) 40
	(C) TBG (D) Autoantibodies		(C) 50 (D) 70
64.	When iodine supplies are sufficient the T ₃ and T ₄ ratio in thyroglobulin is	73.	The number of amino acids in parathor- mone is
	(A) 1:2 (B) 1:4		(A) 65 (B) 84
	(C) 1:7 (D) 1:10		(C) 115 (D) 122
65.	A substance which competes with iodide uptake mechanism by thyroid gland is	74.	The sequence of amino acid in which the biological value of parathormone is
	(A) Thiocynate (B) Iodoacetate		(A) 1–15 (B) 1–34
	(C) Fluoride (D) Fluoroacetate		(C) 30–50 (D) 50–84
66.		75.	PTH
00.	(A) Heme (B) Copper	, ,	(A) Reduces the renal clearance or excretion o
	(C) Zinc (D) Magnesium		calcium
47			(B) Increases renal phosphate clearance
67.	Thyroproxidase requires hydrogen peroxide as oxidizing agent. The H_2O_2 is		(C) Increases the renal clearance of calcium
	produced by		(D) Decreases the renal phosphate clearance
	 (A) FADH₂ dependent enzyme (B) NADH dependent enzyme 	76.	The number of amino acids in the peptide
	(C) NADP dependent enzyme		(A) 16 (B) 24
	(D) NADPH dependent enzyme		(C) 32 (D) 40
68.		77	Calcitonin causes
	The α -subunits of TSH, LH, FSH are	//.	
	identical. Thus the biological specificity		(A) Calcinuria and phosphaturia

(B) Decrease in urinary calcium

(C) Decrease in urinary phosphorous

(D) Increase in blood calcium level

must therefore be β subunit in which the

(B) 112

(D) 199

number of amino acids is

(A) 78

(C) 130

78.	The characteristic of hyperparathyroidism is	86.	In the B chain of insulin molecule, the N-terminal amino acid is			
	(A) Low serum calcium		(A) Proline (B) Threonine			
	(B) High serum phosphorous		(C) Phenylalanine (D) Lysine			
	(C) Low serum calcium and high serum phosphorous(D) High serum calcium and low serum	87.	In the B chain of insulin molecule, the C-terminal amino acid:			
	phosphate		(A) Threonine (B) Tyrosine			
79.	Parathyroid hormone		(C) Glutamate (D) Valine			
	(A) Is released when serum Ca⁺⁺ is too high(B) Inactivates vitamin D	88.	In the insulin molecule, the number of interchain disulphide brides is			
	(C) Is secreted when Ca ⁺⁺ is too low		(A) 1 (B) 2			
	(D) Depends on vitamin K for adequate activity		(C) 3 (D) 4			
80.	δ-Cells of islet of langerhans of pancreas produce	89.	In the insulin molecule, the number of intrachain disulphide bridges is			
	(A) Pancreatic polypeptide		(A) 1 (B) 2			
	(B) Pancreatic lipase (C) Somatostatin		(C) 3 (D) 4			
	(D) Steapsin	90.	Insulin exists in polymeric forms, for			
21	β-cells of islet of langerhans of the		polymerization it requires			
01.	pancreas secrete		(A) Calcium (B) Magnesium			
	(A) Insulin		(C) Manganese (D) Zinc			
	(B) Glucagon	91.	The number of amino acids in pre-pro			
	(C) Somatostatin		insulin is			
	(D) Pancreatic polypeptide		(A) 51 (B) 86			
82.	•		(C) 109 (D) 132			
	(A) Red blood cells (B) Renal tubular cells	92.	Proinsulin has			
	(C) GI tract epithelial cells		(A) 74 amino acids (B) 86 amino acids			
	(D) Liver		(C) 105 amino acids (D) 109 amino acids			
83.	Insulin is a dimmer. The number of amino acids in the A and B chain respectively is	93.	Daily secretion of insulin in a normal adult man is about			
	(A) 19 and 28 (B) 21 and 30		(A) 10 units (B) 20 units			
	(C) 25 and 35 (D) 29 and 38		(C) 30 units (D) 50 units			
84.	In A chain of the insulin molecule the N-	94.	The insulin content of pancreas is about			
	terminal amino acid is		(A) 50–70 units (B) 100–150 units			
	(A) Glycine (B) Valine		(C) 150-180 units (D) 200-250 units			
	(C) Serine (D) Phenylalanine	95.	The half life of insulin is			
85.	In the A chain of insulin molecule the C-		(A) < 3–5 minutes (B) < 8–10 minutes			

(A) Asparagine

(C) Valine

(B) Threonine

(D) Tyrosine

(C) < 15 minutes

(D) < 15 minutes

96. Insulin stimulates

- (A) Hepatic glycogenolysis
- Hepatic glycogenesis
- (C) Lipolysis
- (D) Gluconeogenesis

97. Action of insulin on lipid metabolism is

- (A) It increases lipolysis and increases triglyceride synthesis
- (B) It decreases lipolysis and increases triglyceride synthesis
- (C) It decreases lipolysis and decreases triglyceride synthesis
- It increases synthesis of triglyceride and increased ketogenesis

98. Insulin increases the activity of

- (A) Pyruvate kinase
- (B) Phosphorylase
- (C) Triacylglycerol kinase
- (D) Fructose 2, 6-bisphosphatase

99. Insulin decreases the activity of

- (A) cAMP dependent protein kinase
- (B) HMG CoA-reductas
- (C) Phosphodiesterase
- (D) Acetyl CoA-carboxylase

100. The human insulin gene located on the short arm of chromosome:

- (A) 11
- (B) 17
- (C) 18
- (D) 20

101. Normal serum insulin level varies between

- (A) $4-25 \,\mu \text{U/ml}$
- (B) $25-50 \,\mu\text{U/ml}$
- (C) 70-90 μU/ml
- (D) $100-120 \,\mu\text{U/ml}$

102. Following is a normal overnight fast and a cup of black coffee, a diabetic woman feels slightly nausious and decides to skip breakfast. However she does take her shot of insulin. This may result in

- (A) Heightened glycogenolysis
- (B) Hypoglycemia
- Increased lipolysis
- (D) Glycosuria

103. Deficiency of insulin results in

- (A) Rapid uptake of sugar
- Low blood glucose level
- Decrease urine output
- Presence of glucose in urine

104. The primary stimulus for insulin secretion is increased.

- (A) Blood level of epinephrine
- (B) Blood level of glucagon
- Blood level of glucose
- (D) Water intake

105. The α -cells of pancreas islets produce

- (A) Insulin
- (B) Glucagon
- Somatostatin (C)
- (D) Pancreatic polypeptide

106. The number of amino acids in single chain polypeptide glucagons is

- (A) 21
- (B) 29
- (C) 31
- (D) 39

107. The half life of glucagons is

- (A) ~5
- (B) ~7 (D) ~12
- (C) ~10

108. Glucagon enhances

- (A) Hepatic glycogenolysis
- (B) Muscle glycogenolysis
- (C) Hepatic glycogenesis
- (D) Lipogenesis

109. Normal serum glucagons level in fasting state varies between

- (A) 0-10 pg/ml
- (B) 20-100 pg/ml
- (C) 200-300 pg/ml (D) 400-500 pg/ml

110. Glucagon

- (A) Increases protein synthesis
- (B) Inhibits lipolysis in adipocytes
- Increases gluconeogenesis in liver
- (D) Stimulates muscle glycogenolysis

111. Normal serum free testosterone in adult men varies between

- (A) 1-5 ng/dl
- (B) 6-9 ng/dl
- (C) 10-30 ng/dl
- (D) 50-100 ng/dl

112. Normal serum free testosterone in adult 121. Serum progesterone level during pregwomen varies between nancy is (A) 0.0-0.2 ng/dl (B) 0.3-2 ng/dl (A) < 12 ng/ml(B) > 12 ng/ml(D) 50-100 ng/dl (C) 10-30 ng/dl (C) < 20 ng/ml(D) >24 ng/ml113. The prepubertal total serum testosterone 122. Serum progesterone level during luteal phase is (A) <100 ng/100 ml (B) <200 ng/100 ml(A) 0.2-203 ng/ml(B) 3.0-5.0 ng/ml(C) <300 ng/100 ml (D) <400 ng/100 ml(C) 6.0-30 ng/ml(D) 750 ng/ml 123. Androgens are produced by 114. The total serum testosterone in adult men ic (A) Cells of sertoli (A) 50-100 ng/100 ml (B) Leydig cells (B) 150-250 ng/100 ml (C) Rete testis (C) 300-1000 ng/100 ml (D) Efferent ductules (D) 1000-3000 ng/100 ml 124. The leyding cell activity is controlled by 115. The total serum testosterone in adult (A) Intestitial cell stimulating hormone women is (B) Adernocortex stimulating hormone (A) 0-5 ng/100 ml(C) Thyroid stimulating hormone (B) 10-15 ng/100 ml (D) Melanocyte stimulating harmone (C) 20-80 ng/100 ml 125. Stein-leventhal syndrome is due to over-(D) 100-200 ng/100 ml production of 116. The serum estradiol level in men is (A) Estrogens (B) Androgens (A) 0-5 pg/ml (B) 5-10 pg/ml(C) Gastogens (D) Ethinyl estradiol (C) 24-68 pg/ml (D) 40-60 pg/ml 126. The production of progesterone by corpus luteum cell is stimulated by 117. The serum estradiol level in women during 1-10 days of menstrual cycle is (A) LH (B) TSH (A) 0-10 pg/ml(B) 12-20 pg/ml (D) MSH (C) ACTH (C) 24-68 pg/ml (D) 80-100 pg/ml127. In the biosynthesis of testosterone the rate limiting step is conversion of 118. The serum estradiol level in women during 11-20 days of menstrual cycle is (A) Cholesterol to pregnenolone (A) 5-30 pg/ml(B) 50-300 pg/ml(B) Pregnenolone to progesterone (C) 500-900 pg/ml (D) 1000 pg/ml(C) Progesterone to 17 α-hydroxy progesterone (D) 17α -Hydroxy progesterone to androstene-119. The serum estradiol level in women during dione 21-30 days of menstrual cycle is 128. The enzyme catalyzing conversion of an-(A) 10-20 pg/ml (B) 22-66 pg/ml drostenedione to testosterone is a (C) 73-149 pg/ml (D) $1000 \, pg/ml$ (B) Dehydrogenase (A) Oxygenase 120. The serum progesterone level in follicular (C) Isomerase (D) Decarboxylase phase is about 129. Conversion of testosterone to estradiol (A) 0.2-1.5 ng/100 mlrequires the enzyme: (B) 2.0-2.5 ng/100 ml (A) Aromatase (B) Dehydrogenase (C) 3.5-4.5 ng/100 ml(D) Isomerase (C) Lyase (D) 5.0-6.5 ng/100 ml

130. The precursor of testosterone is

- (A) Aldosterone
- (B) Methyl testosterone
- (C) Estrone
- (D) Pregnenolone

131. Urinary 17 ketosteroids

- (A) Are not found in women
- (B) Reflect the total production of androgenic substances
- (C) Indicate the total production of sex hormone
- (D) Are highly active androgens

132. The hormone measured in urine to test pregnancy is

- (A) Anterior pituitary luteinizing hormone
- (B) Androgen
- (C) Progesterone
- (D) Choroinic gonadotropin

133. Total number of amino acids in human chorionic gonadotropin is

- (A) 53
- (B) 92
- (C) 145
- (D) 237

134. A hormone produced by corpus luteum and placenta, concerned with relaxation of pelvis tissue is

- (A) HCG
- (B) Chorionic somatommotropin
- (C) Relaxin
- (D) Progestins

135. Synthetic progesterone used in oral contraceptive is

- (A) Norethindrone
- (B) Pregnenolone
- (C) Androstenodione (D) Stilbestrol

136. Young women are protected against myocardial infaracation because of the activity of

- (A) Estrogen
- (B) Progesterone
- (C) Growth hormone (D) Oxytocin

137. Hormone receptors possess all the following properties except

- (A) All of them are proteins
- (B) They possess a recognition domain
- (C) They bind hormones with a high degree of specificity
- (D) Number of receptors in a target cell is constant

138. The only correct statement about hormone receptors is

- (A) Receptors for protein hormones are present in cytosol
- (B) Receptors for steroid hormones are membrane bound
- (C) Hormone-receptor binding is irreversible
- (D) Receptors can undergo down regulation and up regulation

139. Down regulation is

- (A) Increased destruction of a hormone
- (B) Feed back inhibition of hormone secretion
- (C) Decreased concentration of a hormone in blood
- (D) Decrease in number of receptors for a hormone

140. All the following statements about hormones are true except

- (A) All of them require specific carriers in plasma
- (B) All of them require specific receptors in target cells
- (C) Some of them are subject to feedback regulation
- (D) Some of them increase the transcription of certain genes

141. All the following statements about steroid hormones are true except

- (A) They are hydrophobic
- (B) They require carriers to transport them in circulation
- (C) Their receptors are intracellular
- (D) They require cyclic AMP as second messenger

142. Cyclic AMP acts as the second messenger for

- (A) ADH
- (B) Glucagon
- (C) Calcitonin
- (D) All of these

143. Cyclic AMP acts as the second messenger for all of the following except

- (A) Oxytocin
- (B) TSH
- (C) ACTH
- (D) FSH

(216) 144. Cyclic GMP acts as the second messenger 153. Tyrosine kinase activity is present in for (A) α-Adrenergic receptors (A) Nerve growth factor β-Adrenergic receptors (B) Atrial natriuretic factor Cholinergic receptors (C) Insulin receptors Epinephrine Norepinephrine 154. Insulin receptor is a 145. Some hormones produce their intra-(A) Monomer (B) Dimer cellular effects by activating (C) Trimer (D) Tetramer (A) Phospholipae A₁ (B) Phospholipase B 155. Tyrosine kinase activity is present in (C) Phospholipase C (D) All of these (A) Acetylcholine receptor PDGF receptor 146. Inositol triphosphate is the second (C) ADH receptor messenger for (D) All of these (B) Cholecystokinin (A) Gastrin (C) Oxytocin (D) All of these 156. Protein kinase C is activated by (A) Cyclic AMP (B) Cyclic GMP 147. G-proteins act as (C) Diacyl glycerol (D) Inositol triphosphate (A) Hormone carriers 157. Melatonin is synthesised in (B) Hormone receptors (C) Second messengers (A) Hypothalamus Posterior pituitary gland Signal transducers Pineal gland 148. Signal transducer for glucagons is a (D) Melanocytes

- (A) Cyclic nucleotide
- (B) Phosphoinositide
- Stimulatory G-protein
- (D) Inhibitory G-protein

149. G-proteins are

- (A) Monomers
- (B) Dimers
- (C) Trimers
- (D) Tetramers

150. G-proteins have a nucleotide binding site for

- (A) ADP/ATP
- (B) GDP/GTP
- (C) CDP/CTP
- (D) UDP/UTP

151. The nucleotide binding site of G-proteins is present on their

- (A) α-Subunit
- (B) β -Subunit α and β -
- (C) γ-Subunit
- (D) δ-Subunit

152. Adenylate cyclase is activated by

- (A) GDP-bearing α-Subunit of G-protein
- (B) GTP-bearing α-Subunit of G-protein
- (C) GDP-bearing γ-Subunit of G-protein
- (D) GTP-bearing γ-Subunit of G-protein

158. Melatonin is synthesised from

- (A) Phenylalanine
- (B) Tyrosine
- (C) Tryptophan
- (D) None of these

159. Melanocyte stimulating hormone is secreted by

- (A) Pineal gland
- Anterior lobe of pituitary gland
- Posterior lobe of pituitary gland
- (D) Intermediate lobe of pituitary gland

160. MSH causes

- (A) Dispersal of melanin granules in melanocytes
- Increase in melanin concentration in melanocytes
- (C) Decerease in melanin concentration in melano-
- (D) Increase in number of melanocytes

161. Secretion of MSH is regulated by

- (A) Feedback mechanism
- (B) Melatonin
- (C) Hypothalamic hormones
- (D) ACTH

162. A hormone synthesised in the hypothalamus is

- (A) Melatonin
- (B) Melanocyte stimulating hormone
- (C) Vasopressin
- (D) Prolactin

163. Posterior pituitary gland secretes

- (A) Catecholamines
- (B) Oxytocin
- (C) Follicle stimulating hormone
- (D) Serotonin

164. A nonapeptide among the following is

- (A) Antidiuretic hormone
- (B) Insulin
- (C) ACTH
- (D) Thyrotropin releasing hormone

165. Diabetes insipidus is caused by deficient secretion of

- (A) Insulin
- (B) Glucagon
- (C) Vasopressin
- (D) Oxytocin

166. Peripheral vasoconstriction is caused by high concentrations of

- (A) Antidiuretic hormone
- (B) Melatonin
- (C) Glucagon
- (D) Oxytocin

167. Somatotropin is secreted by

- (A) Hypothalamus
- (B) Anterior pituitary
- (C) Posterior pituitary (D) Thyroid gland

168. Secretion of Insulin-like Growth Factor-l is promoted by

- (A) Insulin
- (B) Glucagon
- (C) Growth hormone (D) Somatomedin C

169. Growth hormone increases

- (A) Protein synthesis
- (B) Lipogenesis
- (C) Glycogenolysis
- (D) All of these

170. Secretion of growth hormone is inhibited by

- (A) Somatomedin C (B) Somatostatin
- (C) Feedback inhibition(D) All of these

171. Secretion of somatotrophin is promoted by

- (A) Somatomedin C
- (B) Somatostatin
- (C) Growth hormone releasing hormone
- (D) Hypoglycaemia

172. Human growth hormone has

- (A) One polypeptide chain and one intra-chain disulphide bond
- (B) One polypeptide chain and two intra-chain disulphide bond
- (C) Two polypeptide chains joined by one disulphide bond
- (D) Two polypeptide chains joined by two disulphide bond

173. Number of amino acid residues in human growth hormone is

- (A) 51
- (B) 84
- (C) 191
- (D) 198

174. Number of amino acid residues in prolactin is

- (A) 51
- (B) 84
- (C) 191
- (D) 198

175. Secretion of prolactin is regulated by

- (A) Feedback inhibition
- (B) Prolactin releasing hormone
- (C) Prolactin release inhibiting hormone
- (D) All of these

176. Precursor of ACTH is

- (A) Cholesterol
- (B) Pregnenolone
- (C) Corticotropin
- (D) Pro-opiomelanocortin

177. All of the following can be formed from pro-opiomelanocortin except

- (A) α -and β -MSH
- (B) β -and γ -Lipotropins
- (C) α -and β -Endorphins(D) FSH

178. All the following statements about proopiomelanocortin are true except

- (A) It is made up of 285 amino acids
- (B) It is synthesised in pars intermedia and anterior lobe of pituitary gland
- (C) It is the precursor of ACTH and melatonin
- (D) It is the precursor of corticotropin like intermediate lobe peptide and endorphins

(218) MCQs IN BIOCHEMISTRY

179. All the following statements about ACTH are true except

- (A) It is a tropic hormone
- (B) Its target cells are located in adrenal cortex
- (C) Its receptors are located in the cell membrane
- (D) Its second messenger is inosital triphosphate

180. Regulation of ACTH secretion occurs through

- (A) Corticotropin releasing hormone (CRH) and corticotropin release inhibiting hormone (CRIH) of hypothalamus
- (B) Feedback inhibition by cortisol
- (C) CRH and feedback inhibition by cortisol
- (D) CRIH and feedback inhibition by cortisol

181. ACTH is a polypeptide made up of

- (A) 39 amino acids (B) 41 amino acids
- (C) 51 amino acids (D) 84 amino acids

182. CRH is a polypeptide made up of

- (A) 39 amino acids (B) 41 amino acids
- (C) 51 amino acids (D) 84 amino acids

183. Hormonal activity of ACTH is completely lost on removal of

- (A) 5 C-terminal amino acids
- (B) 10 C-terminal amino acids
- (C) 15 C-terminal amino acids
- (D) None of these

184. All the following statements about TSH are true except

- (A) It is a glycoprotein
- (B) It is made up of α and β -subunits
- (C) Receptor recognition involves both the subunits
- (D) Its subunit is identical with those of FSH and

185. All the following statements about TSH are true except

- (A) It is a tropic hormone
- (B) It acts on para-follicular cells of thyroid glands
- (C) Its receptors are membrane-bound
- (D) Its second messenger is cyclic AMP

186. All the following statements about thyrotropin releasing hormone are true except

- (A) It is secreted by hypothalamus
- (B) It is a pentapeptide
- (C) It increases the secretion of TSH
- (D) Its secretion is inhibited by high level of T_3 and T_4 in blood

187. In males, luteinising hormone acts on

- (A) Leydig cells
- (B) Sertoli cells
- (C) Prostate aland
- (D) All of these

188. All the following statements about FSH are true except

- (A) It is a tropic hormone secreted by anterior pituitary
- (B) Its secretion is increased by gonadotropin releasing hormone
- (C) It acts on Sertoli cells
- (D) It increases the synthesis of testosterone

189. In males, secretion of luteinising hormone is inhibited by

- (A) Gonadotropin releasing hormone
- (B) FSH
- (C) High blood level of testosterone
- (D) Inhibin

Secretion of luteinising hormone is increased by

- (A) GnRH
- (B) FSH
- (C) Testosterone
- (D) None of these

191. In structure and function, HCG resembles

- (A) FSH
- (B) LH
- (C) GnRH
- (D) Progesterone

192. Acromegaly results from overproduction of

- (A) ACTH during childhood
- (B) TSH during adult life
- (C) Growth hormone during childhood
- (D) Growth hormone during adult life

193. Acromegaly results in all the following except

- (A) Overgrowth of the bones of face, hands and feet
- (B) Increased stature
- (C) Enlargements of viscera
- (D) Impaired glucose tolerance

194. Overproduction of growth hormone during childhood causes

- (A) Acromegaly
- (B) Gigantism
- (C) Cushing's disease (D) Simmond's disease

195. Decreased secretion of growth hormone during childhood causes

- (A) Simmond's disease (B) Cushing's disease
- (C) Dwarfism
- (D) Cretinism

196. Stature is increased in

- (A) Gigantism (
- (B) Acromegaly
- (C) Simmond's disease (D) Cushing's disease

197. An amino acid used for the synthesis of thyroid hormone is

- (A) Tyrosine
- (B) Tryptophan
- (C) Histidine
- (D) Proline

198. An enzyme required for the synthesis of thyroid hormones is

- (A) Iodinase
- (B) Deiodinase
- (C) Thyroperoxidase (D) Thyroxine synthetase

199. Thyroperoxidase iodinates

- (A) Free tyrosine in thyroid gland
- (B) Tyrosine residues of thyroglobulin
- (C) Tyrosine residues of thyroxine binding globulin
- (D) Tyrosine residues of thyroxine binding prealbumin

200. In thyroxine, tyrosine residues are iodinated at positions:

- (A) 1 and 3
- (B) 2 and 4
- (C) 3 and 5
- (D) 4 and 6

201. Thyroid gland takes up circulating iodine

- (A) By simple diffusion
- (B) By facilitated diffusion
- (C) By active uptake
- (D) In exchange for chloride

202. Thyroid hormones are present in blood

- (A) In free form
- (B) In association with thyroxine binding globulin (TBG)
- (C) In association with thyroxine binding prealbumin (TBPA)
- (D) Mainly in association with TBG, partly in free form and sometimes in association with TBPA also

203. When thyroxine binding globulin and thyroxine binding pre-albumin are saturated with thyroxine, the excess hormone is transported by

- (A) Albumin
- (B) Gamma globulins
- (C) Transcortin
- (D) None of these

204. Receptors for thyroid hormones are present

- (A) On the cell membrane
- (B) Across the cell membrane
- (C) Inside the cells
- (D) In association with G-proteins

205. Binding of thyroxine to its receptors

- (A) Activates Adenylate cyclase
- (B) Activates guanylate cyclase
- (C) Activates a stimulatory G-protein
- (D) Increases transcription

206. The most powerful thyroid hormone is

- (A) Reverse T₃
- (B) DIT
- (C) T₃
- (D) T₄

207. The most abundant thyroid hormone in blood is

- (A) Free T₃
- (B) T₃ bound to TBG
- (C) Free T₁
- (D) T₁ bound to TBG

208. Secretion of thyroid hormones is regulated by

- (A) Hypothalamus
- (B) Anterior pituitary
- (C) Feedback regulation
- (D) All of these

(220) MCQs IN BIOCHEMISTRY

209. Clinical features of hyperthyroidism include

- (A) Goitre, heat intolerance, weight loss and tachycardia
- Goitre, tremors, tachycardia and cold intolerance
- Exophthalmos, goiter, tachycardia and loss of appetite
- (D) Exophthalmos, goiter, tremors and obesity

210. All the following may occur in hyperthyroidism except

- (A) Goitre
- (B) Increased appetite
- (C) Loss of weight (D) Low BMR

211. All the following may occur in myxoedema except

- (A) Cold intolerance (B) Low BMR
- Tachycardia
- (D) Dry and coarse skin

212. Mental retardation can occur in

- (A) Cretinism
- (B) Juvenile myxoedema
- (C) Myxoedema
- (D) Juvenile thyrotoxicosis

213. Parathyroid hormone (PTH) is synthesised

- (A) Chief cells of parathyroid glands
- (B) Oxyphil cells of parathyroid glands
- Para follicular cells of thyroid glands
- Follicular cells of thyroid gland

214. The number of amino acid residues in PTH:

- (A) 51
- (B) 84
- (C) 90
- (D) 115

215. Amino acid residues which are essential for the biological activity of PTH are

- (A) N-terminal 34 amino acids
- (B) N-terminal 50 amino acids
- C-terminal 34 amino acids
- (D) C-terminal 50 amino acids

216. Half-life of PTH is

- (A) A few seconds
- (B) A few minutes
- (C) A few hours
- (D) A few days

217. The second messenger for PTH is

- (A) Cyclic AMP
- (B) Cyclic GMP
- (C) Diacylglycerol
- (D) Inositol triphosphate

218. PTH causes all of the following except

- (A) Increased intestinal absorption of calcium
- Increased intestinal absorption of phosphate
- (C) Increased tubular reabsorption of calcium
- (D) Increased tubular reabsorption of phosphate

219. Secretion of PTH is regulated by

- (A) Hypothalamus
- (B) Anterior pituitary
- Feedback effect of plasma PTH
- (D) Feedback effect of plasma calcium

220. A high concentration of PTH in blood causes

- (A) Increase in plasma calcium and inorganic phosphorous
- Decrease in plasma calcium and inorganic phosphorous
- Increase in plasma calcium and decrease in plasma inorganic phosphorous
- Decrease in plasma calcium and increase in plasma inorganic phosphorous

221. Tetany can occur

- (A) In primary hyperparathyroidism
- (B) In secondary hyperparathyroidism
- (C) In idiopathic hypoparathyroidism
- After accidental removal of parathyroid glands

222. Crystallisation of insulin occurs in the presence of

- (A) Chromium
- (B) Copper
- (C) Zinc
- (D) Calcium

223. Daily secretion of insulin is about δ -

- (A) 10-20 mg
- (B) 40-50 mg
- (C) 10-20 units
- (D) 40-50 units

224. Insulin receptors are decreased in number

- (A) Obesity
- (B) Starvation
- (C) Hyperinsulinism
- (D) Kwashiorkor

HORMONE METABOLISM (221 225. Insulin binding sites are present on the 234. Insulin increases (A) α-subunits of insulin receptor (A) Protein synthesis (B) Fatty acid synthesis (B) β-subunits of insulin receptor (C) Glycogen synthesis (D) All of these (C) γ-subunits of insulin receptor 235. Insulin decreases the synthesis of (D) α -and β -subunits of insulin receptor (A) Hexokinase (B) Glucokinase 226. α-Subunits of insulin receptor are present (C) PEP carboxykinase (D) Glycogen synthetase (A) Outside the cell membrane Diabetes mellitus can occur due to all of (B) In the cell membrane the following except (C) Across the cell membrane (A) Deficient insulin secretion (D) In the cytosol (B) Tumour of β-cells 227. β-Subunits of insulin receptor are present (C) Decrease in number of insulin receptors (D) Formation of insulin antibodies (A) Outside the cell membrane (B) In the cell membrane 237. Hypoglycaemic coma can occur (C) Across the cell membrane (A) In untreated diabetes mellitus (D) In the cytosol In starvation 228. In the insulin receptor, tyrosine kinase After overdose of oral hypoglycaemic drugs domain is present in After overdose of insulin (A) α-Subunits (B) β-Subunits 238. Second messenger for glucagons is (C) γ-Subunits (D) δ-Subunits (A) Cyclic AMP (B) Diacylglycerol 229. Binding of insulin to its receptor activates (C) Cyclic GMP (D) Inositol triphosphate (A) Adenylate cyclase (B) Guanylate cyclase 239. Number of amino acid residues in (C) Phospholipase C (D) Tyrosine kinase glucagons is 230. Insulin receptor is made up of (A) 29 (B) 34 (A) One α -and one β -subunit

- (B) Two α -and two β -subunit
- (C) Two, α two β -and two γ -subunit
- (D) One α , one β -one γ -and one δ -subunit

231. Insulin is required for the active uptake of glucose by most of the cells except

- (A) Muscle cells
- (B) Renal tubular cells
- (C) Adipocytes
- (D) Liver cells

232. Insulin decreases

- (A) Glycogenesis
- (B) Glyolysis
- (C) Gluconeogenesis
- (D) Tubular reabsorption of glucose

233. Insulin increases

- (A) Glycogenesis
- (B) Gluconeogenesis
- (C) Lipolysis
- (D) Blood glucose

- (C) 51
- (D) 84

240. Glucagon secretion increases

- (A) After a carbohydrate-rich meal
- (B) After a fat-rich meal
- When blood glucose is high
- (D) When blood glucose is low

241. The maineffecting of glucagons is to increase

- (A) Glycolysis in muscles
- (B) Glycogenolysis in muscles
- (C) Glycogenolysis in liver
- Glycogenesis in liver

242. Tyrosine is required for the synthesis of all of the following except

- (A) Melatonin
- (B) Epinephrine
- (C) Norepinephrine (D) Thyroxine

243. Dopamine is synthesised from

- (A) Dihydroxyphenylalanine
- (B) Epinephrine
- (C) Norepinephrine
- (D) Metanephrine

244. Blood brain barrier can be crossed by

- (A) Epinephrine
- (B) Dopamine
- (C) Dopa
- (D) All of these

245. Epinephrine is synthesised in

- (A) Chromaffin cells of adrenal medulla
- (B) Sympathetic ganglia
- (C) Brain
- (D) All of these

246. Immediate precursor of epinephrine is

- (A) Metanephrine
- (B) Norepinephrine
- (C) Dopa
- (D) Dopamine

247. The chief metabolite of catecholamines is

- (A) Metanephrine
- (B) Normetanephrine
- (C) 3, 4-Dihydroxymandelic acid
- (D) Vanillylmandelic acid

248. An enzyme involved in catabolism of catecholamines is

- (A) Dopa decarboxylase
- (B) Aromatic amino acid decarboxylase
- (C) Monoamine oxidase
- (D) Catechol oxidas

249. Norepinephrine binds mainly to

- (A) α-Adrenergic receptors
- (B) β-Adrenergic receptrors
- (C) Muscarinic receptors
- (D) Nicotinic receptors

250. Astimulatory G-protein transduces the signals from

- (A) α_1 -and β_1 -adrenergic receptors
- (B) α_2 -and β_2 -adrenergic receptors
- (C) α_1 -and α_2 -adrenergic receptors
- (D) β_1 -and β_2 -adrenergic receptors

251. Binding of catecholamines to α_2 adrenergic receptors

- (A) Increases the intracellular concentration of cAMP
- (B) Increases the intracellular concentration of cGMP
- (C) Decreases the intracellular concentration of cAMP
- (D) Decreases the intracellular concentration of CGMP

252. Phosphoinositide cascade is activated on binding of catecholamines to

- (A) α_1 -Adrenergic receptors
- (B) α_2 -Adrenergic receptors
- (C) β_1 -Adrenergic receptors
- (D) β_2 -Adrenergic receptors

253. Epinephrine decreases

- (A) Glycogenesis (B) Glycogenolysis
- (C) Gluconeogenesis (D) Lipolysis

254. Epinephrine increases the concentration of free fatty acids in plasma by increasing

- (A) Extramitochondrial fatty acid synthesis
- (B) Mitochondrial fatty acid chain elongation
- (C) Microsomal fatty acid chain elongation
- (D) Lipolysis in adipose tissue

255. Epinephrine increases all of the following except

- (A) Glycogenolysis in muscles
- (B) Lipolysis in adipose tissue
- (C) Gluconeogenesis in muscles
- (D) Glucagon secretion

256. Secretion of catecholamines is increased in

- (A) Cushing's syndrome
- (B) Addison's disease
- (C) Phaeochromocytoma
- (D) Simmond's disease

257. Zona glomerulosa of adrenal cortex synthesises

- (A) Glucocorticoids
- (B) Mineralocorticoids
- (C) Androgens
- (D) Estrogen and progesterone

HORMONE METABOLISM 258. Cortisol is a (A) Glucocorticoid (B) Mineralocorticoid (C) Androgen (D) Estrogen (A) Cyclic AMP (B) Cyclic GMP 259. The major mineralcorticoid is (C) Inositol triphosphate (A) Hydrocortisone (B) Aldosterone (C) Aldactone A (D) Androstenedione 260. Steroid hormones are synthesised in all of the following except ing except (A) Testes (B) Ovaries (A) Gluconeogenesis (C) Adrenal medulla (D) Adrenal cortex (B) Lipolysis in extremities 261. Steroid hormones are synthesised from Hepatic glycogenesis (A) Cholesterol (B) 7-Dehydrocholesterol Calcitriol (D) 7-Hydroxycholesterol (A) Glucokinase 262. A common intermediate in the synthesis (B) Glucose-6-phosphatase of all the steroid hormones is (A) Pregnenolone Pyruvate carboxylase 17-Hydroxypregnenolone (C) Corticosterone (D) Progesterone (A) Hypothalamus 263. A common intermediate in the synthesis

of cortisol and aldosterone is

- (A) Progesterone
- (B) Testosterone
- (C) Estradiol
- (D) None of these

264. A common intermediate in the synthesis of estrogens is

- (A) Cortisol
- (B) Andostenedione
- (C) Corticosterone
- (D) 11-Deoxycorticosterone

265. Glucocorticoids are transported in blood

- (A) In association with transcortin chiefly
- In association with albumin to some extent
- In free form partly
- (D) All of these

266. All the following statements about transcortin are true except

- (A) It is synthesised in liver
- (B) It transports glucocorticoids
- (C) It transports aldosterone
- (D) It transports progesterone

267. The second messenger for glucocorticoids

No second messenger is required

268. Glucocorticoids increase all of the follow-

(C) Synthesis of elcosanoida

269. Glucocorticoids increase the synthesis of all of the following except

(C) Fructose-1, 6-biphosphatase

270. Secretion of glucocorticoida is regulated by all the following except

- (B) Anterior pituitary
- (C) Feedback control by blood glucose
- (D) Feedback control by glucocorticoids

271. Excessive secretion of glucocorticoids raises blood glucose by

- (A) Decreasing glycogenesis
- (B) Increasing glycogenolysis
- (C) Increasing gluconeogenesis
- Inhibiting HMP shunt

272. Mineralcorticoids regulate the metabolism of all of the following except

- (A) Sodium
- (B) Potassium
- (C) Calcium
- (D) Chloride

273. Mineralocorticoids increase the tubular reabsorption of

- (A) Sodium and calcium
- (B) Sodium and potassium
- (C) Sodium and chloride
- (D) Potassium and chloride

274.	Mineraloc secretion o	_	inc	rease the tubular	283.		retion of andro	_	s is increc	ised by
	(A) Sodium	1	(B)	Potassium		٠,	ACTH	, ,	Growth ho	ormone
	(C) Chlorid	le	(D)	Bicarbonate	284.		ring late pregna			
275.	_	of minera	lcor	ticoids is increased	20		progesterone is		,	
	by		(D)			(A)	Adrenal cortex	(B)	Placenta	
	(A) ACTH (C) Hypoko	alaemia		Angiotensin Hypernatraemia		(C)	Corpus luteum	(D)	Graafian	follicles
276				there is excessive	285.	Pro	gesterone is tro	ınsp	orted in l	blood by
270.	retention of		se,	illere is excessive			Transcortin			
	(A) Potassiu	um	(B)	Sodium			Sex hormone bind	ding	globulin	
	(C) Chlorid	le	(D)	Water			Albumin Testosterone estro	aen	hinding alo	bulin
277.				rome due to total	204		major metabo	•		
	cortex, the		dro	cylase in adrenal	200.		Pregnenolone		Pregnane	
			n of a	lucocorticoids		(C)	Estradiol		Norethind	
			_	nineralcorticoids	287.	Secretion of progesterone				
	(C) Excessi (D) All of the		n of	androgens	207.		Is more in first hal			cle than in
278.	Spironola	ctone is c	ın a	ntagonist of		(B)	Is more in second	half	of menstrua	l cycle than
	(A) Cortisol		(B)	Hydrocortisone			in first half			·
	(C) Aldoste	erone	(D)	Testosterone			Remains constant		-	al cycle
279.	Androgen	s are syn	the	sised in			Decreases during			
	, .	cells in test			288.		men become su after menopaus			
		cells in test					Secretion of Parat			euseu
	(C) Seminit	ferous tubu e aland	les				Conversion of vito			triol
200		•		يرط لممالط منا لمصر		(C)	Secretion of estro	gen		
280.	(A) Transco		ispo	orted in blood by		(D)	Secretion of prog	ester	one	
		erone bindi	ing g	lobulin	289.		ormone used fo	r det	ection of	pregnan-
				binding globulin		cy i				
	(D) Albumi	n				(A) (B)	Estrogen Progesterone			
281.	The metab	olites of	and	lrogens are			Oxytocin			
		Iroxysteroic	ls				Chorionic gonado	otropi	in	
	· ·	osteroids 			290.		centa secretes			ollowing
		lroxysteroic osteroids	IS				ept			•
282.	` '		ch :	s more powerful			FSH			
ZUZ.	than testo			a more howerior		(B)	Progesterone			
				Dihydrotestosterone		(C) (D)	Estrogen Chorionic gonado	otrop:	in	
	(C) Andros	terone	(D)	Epiandrosterone		וטו	chonome gondae	, op		

291. Gastrin is a polypeptide made up of

- (A) Five amino acids
- (B) Twelve amino acids
- Seventeen amino acids
- Twenty amino acids

292. Biological activity of gastrin is present in the

- (A) Four N-terminal amino acids
- Four C-terminal amino acids
- Five N-terminal amino acids
- (D) Five C-terminal amino acids

293. All the following statements about βendorphin are true except μ :

- (A) It is a polypeptide
- (B) Its precursor is pro-opio-melanocortin
- Its receptors are represent in brain
- (D) Its action is blocked by morphine

294. All the following statements about epidermal growth factor are true except

- (A) It is a protein
- (B) It possess quaternary structure
- (C) Its receptor is made up of a single polypeptide chain
- (D) Its receptor possesses tyrosine kinase domain

295. Met-enkephalin is a

- (A) Tripeptide
- (B) Pentapeptide
- (C) Octapeptide
- (D) Decapeptide

296. Vasoconstrictor effect of ADH is mediated

- (A) cAMP
- (B) cGMP
- (C) Protein kinase C (D) Angiotensin II

297. The rate limiting step in catecholamine synthesis is catalysed by

- (A) Phenylalanine hydroxylase
- Tyrosine hydroxylase
- Dopa decarboxylase
- (D) Phenylethanolamine N-methyl transferase

298. Dopa decarboxylase is inhibited by

- (A) Epinephrine
- (B) Norepinephrine
- (C) α -Methyldopa
- (D) None of these

299. Tyrosine hydroxylase is inhibited by

- (A) Catecholamines
- (B) α-Methyldopa
- Phenylalanine
- (D) Vanillyl mandelic acid

300. Urinary excretion of vanillyl madelic acid is increased in

- (A) Phaeochromocytoma
- (B) Cushing's syndrome
- (C) Carcinoid syndrome
- (D) Aldosteronism

301. Iodide uptake by thyroid gland is decreased by

- (A) Thicyanate
- (B) Thiouracil
- (C) Thiourea
- (D) Methimazole

302. Binding of growth hormone to its receptor results in phosphorylation of

- (A) JAK-2
- Growth hormone receptor
- STATs
- (D) All of these

303. Binding of growth hormone to its receptor results in increased transcription of

- (A) c-fos gene
- (B) c-myc gene
- (C) p-53 gene
- (D) None of these

304. Activation of IRS-1, PI-3 kinase and GRB-2 is brought about by

- (A) Glucagon
- (B) Insulin
- (C) Prolactin
- (D) IGF-2

305. The protein IRS-1 is phosphorylated by

- (A) Protein kinase A
- (B) Protein kinase C
- (C) Tyrosine kinase activity of insulin receptor
- (D) Tyrosine kinase activity of IGF-1 receptor

306. Phosphorylated IRS-1 activates GRB-2 which is

- (A) G-protein receptor binding protein-2
- Growth factor receptor binding protein-2
- (C) Growth hormone receptor binding protein-2
- (D) Glucocorticoid receptor binding protein-2

307. STAT proteins are

- (A) Thermostat proteins of brain
- (B) Glucostat proteins of hepatocyte cell membrane
- (C) Short term activators of translation
- (D) Signal transduction and activators of transcription

308. Activated phospholipase C acts on

- (A) Phosphatidyl inositol-4, 5-biphosphate
- (B) Inositol-1, 4, 5-triphosphate
- (C) Protein kinase C
- (D) Pl-3 kinase

309. Phospholipase C is activated by

- (A) G proteins
- (B) G, proteins
- (C) G_a proteins
- (D) G₁₂ proteins

310. Proteoglycans are made up of proteins

- (A) Glucosamine
- (B) Mannosamine
- (C) Sialic acid
- (D) Mucopolysaccharides

311 Sweat chlorides are increased in

- (A) Cystic fibrosis
- (B) Pancreatic cancer
- (C) Acute pancreatitis (D) None of these

312. All the following statements about cystic fibrosis are correct except

- (A) It is inherited as an autosomal recessive disease
- (B) It affects a number of exocrine glands
- (C) It causes increased sweating
- (D) Sweat chlorides are above 60 mEq/L in this disease

313. Radioactive iodine uptake by thyroid gland 24 hours of a test dose is

- (A) 1.5-15% of the test done
- (B) 15-20% of the test done
- (C) 20-40% of the test done
- (D) 50-70% of the test done

314. Radioactive iodine uptake by thyroid gland is increased in

- (A) Endemic goitre
- (B) Hyperthyroidism
- (C) Myxoedema
- (D) Creatinism

315. Normal range of total thyroxine in serum is

- (A) 0.8-2.4 ng/dl
- (B) $0.8-2.4 \mu g/dl$
- (C) 5-12 ng/dl
- (D) 5-12 μg/dl

316. Normal range of total tri-iodothyronine in serum is

- (A) 0.1-0.2 ng/dl
- (B) 0.1-0.2 μg/dl
- (C) 0.8-2.4 ng/dl
- (D) $0.8-2.4 \,\mu g/dl$

317. Administration of TSH increases serum T_3 and T_4 in

- (A) Hyperthyroidism of pituitary origin
- (B) Hyperthyroidism of thyroid origin
- (C) Hypothyroidism of pituitary origin
- (D) Hypothyroidism of thyroid origin

318. High level of T₃ and T₄ and low TSH in serum indicates

- (A) Hyperthyroidism of pituitary origin
- (B) Hypothyroidism of pituitary origin
- (C) Hyperthyroidism of thyroid origin
- (D) Hypothyroidism of thyroid origin

319. BMR is increased in

- (A) Endemic goitre
- (B) Thyrotoxicosis
- (C) Myxoedema
- (D) Cretinism

320. Which one of the following statements correctly describes eukaryotic DNA?

- (A) If uses DNA polymerase with nuclease activities
- (B) It is replicated bidirectionally at many points
- (C) It contains no repetitive DNA
- (D) It is nonlinear

321. Which one of the following causes frame shift mutation?

- (A) Transition
- (B) Transversion
- (C) Deletion
- (D) Substitution of purine to pyrimidine

322. The second messenger for many hormones is

- (A) ATP
- (B) cyclic AMP
- (C) cGMP
- (D) UTP

323.	The most potent hormone concerned with	331.	In hyperparathyroidism there is
	the retention of sodium in the body is (A) Cortisone (B) Aldosterone		(A) Hypocalcemia (B) Hypophophatemia (C) Hypokalemia (D) Hyperkalemia
	(C) Corticosterone (D) Cortisol	332.	
324.	Aspirin blocks the synthesis of (A) Prostaglandins only		(A) Addison's disease (B) Hypothyroidism (C) Hypopituctarism (D) Acromegaly
	(B) Prostacyclins only(C) Thromboxanes only(D) All of these	333.	Richest source of prostaglandins in a human male is (A) Blood (B) Urine
325.	Retention of sodium in the body leads to a retention of		(C) Semen (D) C.S.F.
	(A) Potassium(B) Water(C) Potassium and water(D) Neither potassium nor water	334.	second messenger by hormones: (A) mRNA (B) cAMP (C) Calcium ions
326.	cAMP is so called because it is formed during	335	(D) Myoinisotol 1, 4, 5 triphosphate This pancreatic hormone increases the
	(A) TCA cycle(B) Urea cycle(C) Rhodopsin cycle(D) It has a cyclic structure	003.	blood-sugar level: (A) Insulin (B) Glucagon (C) Pancreozymin
327.			(D) Pancreatic polypeptide
	to protein. (A) lodine (B) Thyroid hormones (C) Thyroxide (D) Trivide thyroxide	336.	Which one of the following statements is fully correct?
328.	(C) Thyroxine (D) Tri iodo thyronine In hypophysectonized animals, fasting produces		(A) Hormones are needed in the diet(B) Hormones can be elaborated only by endocrine glands
	(A) Severe hyperglycemia (B) Hypoglycemia		(C) All the hormones enter the cells and perform their function
	(C) No change in blood sugar (D) Mild hyper glycemia		(D) Hormones are substance synthesized in the body in small quantities and control and regulate metabolic events
329.	Calcitomica is antagonist to	337.	T ₃ is
	(A) Serotonin(B) Thyroxine(C) Tri iodo thyronine(D) Para thyroid hormone		(A) Thyroxine(B) Triodo thyronine(C) Triodo tyrosine(D) Reverse tri iodo thyronine
330.	There is polyuria without glycosuria in this disorder	338.	Wheih of the following hormone is a peptide of less than ten amino acids?
	(A) Diabetes insipidus (B) Diabetes millitus(C) Bronze diabetes (D) Juvenile diabetes		(A) Insulin (B) Growth hormone (C) Oxytocin (D) Parathyroid hormone

339.	Tyrosine of thyroglobulin is acted upon by to give mono and diiodo	347.	The blood sugar raising action of the hormone of suprarenal cortex is due to
340.	tyrosines. (A) Potassium lodide (B) lodine (C) lodide I (D) Higher valency state of iodine (I+) Whach of the following hormone does not activate adenylate cyclase? (A) Epinephrine (B) Glucagon	348.	 (A) Glyconeogenesis (B) Glycogenolysis (C) Glucagon like activity (D) due to inhibition of glomerular filtration of glucose Hyper insulinism can cause coma since (A) The chief nutrient for the brain is glucose (B) The chief nutrient for the heart is glucose (C) The glucostatic role of the liver is damaged (D) The kidneys are damaged
	(C) Parathyroid hormone (D) Insulin	349.	Which of the following property of prostaglandins has been utilized by
341.	Pheochromacytoma is a tumor of (A) adrenal medulla (B) bone (C) head of Pancreas (D) pituitary		chinicians in hospital for (A) Inducing fever (B) Causing inflammation (C) Effecting smooth muscle contraction (D) Disaggregation of spermatozoa
342.	Which one of the following statements is incorrect? (A) Insulin increases glucose phosphorylation (B) Insulin increases glycolysis (C) Insulin augments HMP shunt (D) Insulin promotes gluconeogenesis	350.	 A major structural difference between estrogens and androgens is the fact that (A) The androgens are usually C₂₁ steroids (B) The estrogens are usually digitonin precipitable (C) The androgens have an aromatic ring
343.	Which of one ring in the structure of the following is aromatic? (A) Androgens (B) Estrogens (C) Cholesterol (D) Bile acids	351.	 (D) The estrogens have an aromatic ring Alloxan can experimentally induce diabetes mellitus due to (A) Stimulation of α cells of the islets of langerhans
344.	Which of one of the following is not GUT hormone? (A) Motiline (B) Secretion		(B) Necrosis of the β cells of the islets(C) Potentiation of insulinase activity(D) Epinephrine like action
345.	(C) Gastrin (D) Calcitonin Which of the following hormones are synthesized as prehormones	352.	Which of the following alleviates asthma? (A) PGE ₁ only (B) PGE ₁ and PGE ₂ (C) PGF ₂ (D) PGA
	 (A) Vasopressin and oxytocin (B) Growth hormone and insulin (C) Insulin and parathyroid hormone (D) Insulin and Glucagon 		Thyroxine is derived from (A) Tyrosine (B) Tyronine (C) Taurine (D) Tryptaine
346.	This hormone has disulphide group: (A) Glucagon (B) Insulin (C) T ₄ (D) Epinephrine	354.	Adrneal cortical response is poor in (A) Kwashiorkor (B) Marasmus (C) Fatty liver (D) Atherosclerosis

355.	Protein bound ioding to the extent of	ne in blood is present / dL	364.		nich of one of the hypothalamus?		lowing is released
	, ,	(B) 4-8 mg		(A)	Somatostatin		
	(C) 3-8 gm	(D) 4-8 gm		(B)	Somatotropic horr	none	•
356.	Prostaglandins are			(C)	Somato medin C		
	(A) C ₂ unsaturated ac	cids		(D)	Luteinising hormo	ne	
	(B) C₂₇ saturated alco(C) C₂₀ saturated acid	ds	365.		nich one of the fol the adenohypo		ring is not liberated sis?
	(D) C ₂₇ saturated alco	phols		(A)	Growth hormone	(B)	TSH
357.		e following scientists		(C)	ACTH	(D)	Gonadotropin
	taglandins?	n the field of pros-	366.		nich of the follo der the control o		g hormone is not CTH?
	(A) Voneuler (C) Andre robet	(B) Sultan Karim (D) Kendal		(A)	Aldosterone	(B)	Cortisol
250		• •		(C)	Corticosterone	(D)	Deoxycorticosterone
358.	prostaglandins give	er in the names of es the number of (B) Double bonds	367.		nich of the follo		ng organ prefers
	(A) OH groups (C) Acid groups	• •		(A)	Liver	(B)	Testes
350		ortant functions of		(C)	Pancreas	(D)	Heart
337.	prostacyclins is	orialii Toliciiolis oi	368.	Total	al synthesis of cr	eati	ine can be done by
	(A) Inhibition of platel	et aggregation			Liver		Kidneys
	(B) Contraction of uter				Pancreas		Heart
	(C) Decrease of gastri	c secretion	369.	Thy	rotropin releasi	ina	hormone is a
	(D) Relieving osthma		0021	-	Dipeptide	_	
360.	Vasopressin is also	known as			Octapeptide		
	(A) Antidiabetogenic(B) Antidiuretic hormo		370.	Ну			gonadal oxis, fill
	(C) Somatotropic horm	none		-	Adrenal		Thyroid
	(D) Pitoxin				Hypophyseal		•
361.	labour?	ng is used for inducing	371.				o acids in human he synthesis were
		(B) Prostacyclins		doı	ne by		
		(D) Thromboxanes			Sanger		Krebs
362.		wing does not have		(C)	Chah Holi	(D)	Molisch
	disulphide bond?	(D) \/	372.	Pro	opiomelanocor	tin i	s the precussor of
	(A) Oxytocin (C) Insulin	(B) Vasopressin (D) Glucagon		(A)	ACTH		β -tropin
0/0				(C)	Endorphins	(D)	All of these
363.	Which is incorrect? the glycogenolysis	Epinephrin promotes in	373.	Adı	renalin is synthe	size	ed from
	(A) Muscle	(B) Liver		(A)	Adenine	٠,	Adenosine
	(C) Heart	(D) None of these		(C)	Tyrosine	(D)	Tryptophan

374.		ticotropin releas direct release o		hormone controls	382.		losteronism will hology of	pre	esent the chemical
	(A)	Pro-opiomelanoco	rtin			(A)	Addison's	(B)	Cushing's
	(B)	α MSH				(C)	Grave's	(D)	Hartnup's
	(C)	βMSH			383	On	e of the followin	a de	oes not bind T ₃ and
	(D)	Endorphins			505.	T₄:	e or rife rollowin	g u	
375.		immediate par phins is	ent	of α , β and γ en-		(A) (C)	Albumin TBPA		TBG Haptoglobin
	(A)	Pro-opiomelanoco	rtin						
		β-lipotropin			384.	Epi	nephrine causes	in i	muscle:
	(C)	ATCH				(A)	Gluconeogenesis		, -
	(D)	Lipoprotein				(C)	Glycolysis	(D)	Glycogenolysis
376.		lactin release in	nhil	oiting hormone is	385.	Rev	erse T ₃ is		
		Serotonin	(R)	Norepinephrine		(A)		und g	given counter the effects
		Dopanine		Acetyl choline		(D)	of T ₃	н.	l f e
277		•		•		(B)	Formed from I_4 b		s no hormone function
3//.	Which one of the following is not a symptom of cushing's disease?						•		as hormone function
	_	Hyperglycemia	_	Hypernatremia			-		
				Hyperkalemia	386.		s pancreatic hor nesis:	mor	ne promotes hypo-
378.				permeability of		(A)	Insulin	(B)	Glucagon
		cose across the _l scle cells by	pla	sma membrane of		(C)	Stomato station	(D)	Pancreozymine
		Acting on adenylo	ite c	vcle	387.				following single
	(B)	- ,	nteg	rity of the membrane		cou			mone effectively eral diabetogenic
	(D)	By membrane cru	ting	the hexose carries of		(A)	Glucagon	(B)	Glucocorticoids
				and making them fuse			Insulin		Growth hormone
379.	Son	with the plasma m natostatin is pro			388.		nich of the foll	owi	ng statements is
	(A)	Hypothalamus				(A)	Thyroxine inhibits	utiliz	zation of glucose
	(B)	Pancreas					Insulin increases u		_
	(C)	Hypothalamus and	d po	increas		(C)	Glucagon promot	les m	uscle glycogenolysis
	(D)	Hypothalamus and	d Ad	Irenals		(D)	Insulin inhibits lipo	gene	esis from carbohydrates
380.	Insu	Jlin like growth	ı he	ormones are pro-	389.	Ste	roid hormones	are	synthesized from
	duc	ed by		•		(A)	Adenine	(B)	Protein
	(A)	Hypophysis	(B)	Liver		(C)	Vitamin	(D)	Cholesterol
	(C)	Pancreas	(D)	Thyroid	390.	Ho	rmones act only	on on	specific organs or
381.	ln p	heochromocyto	ma	, urine will have			ues. These are o		
	(A)	FILGU		VMA		(A)	Active sites		Reaction centre
	(C)	5 HIAA		Lysine and Arginine		(C)	Target organ/Tissu	e(D)	Physiological site

391.	hormone is a single chain polypeptide having 32 amino acids with molecular weight of 3,600.	398.	(A)	Dephosphorylati lase	ing of	acid synthesis by acetyl CoA carboxy-
	(A) Testosteron (B) Thyroxine (C) Calcitonine (D) Vasopressin		(C)	Activating phosp Inhibiting malony	yl CoA	formation
392.	Which of the following is noted in cushing's syndrome, a tumor associated disease of the adrenal cortex? (A) Decreased production of epinephrine (B) Excessive production of epinephrine (C) Excessive production of vasopressin (D) Excessive production of cortisol	399.	Hor the trip relame:	activity rmonal stimular second mess shosphate (IP ₃)	tion osengo sengo h otl	Acyl CoA transferase of the formation of er inositol 1,4,5 ckly leads to the her intracellular Prostaglandin Leukotriene
393.	A cup of strong coffee would be expected to	400.	Ho			at stimulate cAMP
	 (A) Interfere with synthesis of prostaglandins (B) Decrease the effects of Glucagon (C) Enhance the effects of epinephrine (D) Provide the vitamin nicotinic acid 		(A) (B)	transform the excAMP production are proteins disti	xterna n nct an	of two proteins that I signal into internal d separate from those
394.	Increased reabsorption of water from the kidney is the major consequence of which of the following hormones?			binding of the ho are not very spe	f the cormon	catalytic subunit upon
	(A) Cortisol (B) Insulin (C) Vasopressin (D) Aldosterone	401.	ΔII	different hormon the following b		ones use cAMP as
395.	Lack of Glucocorticoids and mineral	4011		econd messeng		
0200	corticoids might be consequence of which		(A)	Estrogen	(B)	FSH
	of the following defects in the adrenal cortex?			Luteinizing	(D)	Glucagon
	 (A) Androstenadione deficiency (B) Estrone deficiency (C) 17 α-OH progesterone deficiency 	402.	hyp (A)	the following perglycemia ex Epinephrine Insulin	cept (B)	rmones promote Norepinephrine Glucagon
396.	 (D) C- α-Hydroxylase deficiency ADP ribosylation is the mode of action of (A) Cholera toxin 	403.	cyc	lase which caus	es the	e enzyme <i>adenyl</i> - e increase of blood hormone is called
	(B) Acetyl choline (C) Muscerinic receptors (D) Cyclic AMP		(A) (B) (C) (D)	Hypoglycemic fa Hyper glycemic f Antidiauritic factor Thyrotropin-relea	actor or	actor
397.	Which one of the following hormones is	404.	. ,	I hormone biod	•	
	derived most completely from tyrosine? (A) Glucagon (B) Thyroxine (C) Insulin (D) Prostaglandins			Protein Glycoprotein	(B)	Fat Carbohydrate

405.	05. The secondary sexual characters in females is effected by		409.	Which of the following hormones is not involved in carbohydrate metabolism?			
		(B) Gluco corticoids D) None of these		(A) (C)	ACTH Vasopressin		Glucagon Growth hormone
406.	/ I	n the bone marrow	410.		the process of to genetic informat DNA to DNA RNA to protein	tion (B)	is from DNA to protein DNA to RNA
	 (B) Vitamin B₁₂ respons (C) Pyridoxine responsiv (D) Vitamin C responsiv 	ive ve e	411.	the	ricodon region is structure of r-RNA m-RNA	(B)	important part of tRNA z-DNA
407.	. ,	(B) Gastrin D) ACTH	412.	-	rroid function is a sotopes: Na ²⁴ Ca ⁴⁵	(B)	ermined by the use K^{42}
408.	An essential agent for to glycogen in liver i		413.		nicious anaemi lio active substa		diagnosed by the
	• •	(B) GTP D) Pyruvic acid		(A) (C)	Cl ₃₆	(B)	P ³² Fe ⁵⁹

ANSWERS							
1. C	2. B	3. A	4. A	5. A	6. C		
7. A	8. B	9. B	10. D	11. B	12. B		
13. A	14. A	15.B	16. A	17. B	18. C		
19. A	20. C	21. A	22. C	23. A	24. B		
25. C	26. A	27. C	28. A	29. C	30. A		
31. C	32. C	33. C	34. A	35. A	36. A		
37. A	38. C	39. B	40. B	41. A	42. A		
43. A	44. C	45. B	46. C	47. A	48. A		
49. A	50. B	51. C	52. B	53.B	54. C		
55. C	56. D	57. C	58. C	59. B	60. B		
61. A	62. B	63. D	64. C	65. A	66. A		
67. D	68. B	69. A	70. D	71. C	72. D		
73.B	74. B	75. A	76. C	77. A	78. D		
79. C	80. C	81. A	82. D	83.B	84. A		
85. A	86. C	87. A	88. B	89. A	90. D		
91. C	92. B	93. D	94. D	95. A	96. B		
97. B	98. A	99. A	100. A	101. A	102.B		
103. D	104. C	105. B	106. B	107. A	108. A		
109. B	110. C	111. C	112. B	113. A	114. C		
115. C	116. C	117. C	118.B	119. C	120. A		
121. D	122. C	123. B	124. A	125. B	126. A		
127. A	128. B	129. A	130. D	131.B	132. D		
133. D	134.C	135. A	136. A	137. D	138. D		
139. D	140. A	141. D	142. D	143. A	144. B		
145. C	146. D	147. D	148. C	149. C	150. B		
151. A	152. B	153. D	154. D	155. B	156. C		
1 <i>57</i> . C	158. C	159. D	160. B	161. C	162. C		
163. B	164. A	165. C	166. A	167. B	168. C		
169. A	170. B	171. C	172. B	173. C	174. D		
175. C	176. D	177. D	178. C	1 <i>7</i> 9. D	180. C		
181. A	182. B	183. D	184. D	185. B	186. B		
187. A	188. D	189. C	190. A	191.B	192. D		
193. B	194. B	195. C	196. A	197. A	198. C		
199. B	200. C	201. C	202. D	203. A	204. C		
205. D	206. C	207. D	208. D	209. A	210. D		
211. C	212. A	213. A	214. B	215. A	216. B		
217. A	218. D	219. D	220. C	221. D	222. C		
223. D	224. A	225. A	226. A	227. C	228. B		
229. D	230. B	231. D	232. C	233. A	234. D		
235. C	236. B	237. D	238. A	239. A	240. D		
241. C	242. A	243. A	244. C	245. D	246. B		

247. D	248. C	249. A	250. D	251. C	252. A
253. A	254. D	255. C	256. C	257. A	258. B
259. C	260. A	261. A	262. A	263. A	264. B
265. D	266. C	267. D	268. C	269. A	270. C
271. C	272. C	273. C	274. B	275. B	276. A
277. D	278. C	279. A	280. C	281.B	282. B
283. A	284. B	285. A	286. B	287. B	288. C
289. D	290. A	291. C	292. B	293. D	294. B
295. B	296. C	297. B	298. C	299. A	300. A
301. A	302. D	303. A	304. B	305. B	306. B
307. D	308. A	309. C	310. D	311. A	312. C
313. C	314.B	315. D	316.B	317. C	318. C
319.B	320. C	321. C	322. B	323.B	324. D
325. B	326. D	327. B	328. B	329. D	330. A
331.B	332. D	333. C	334. A	335.B	336. D
337. B	338. C	339. D	340. D	341. A	342. D
343. B	344. D	345. C	346. B	347. A	348. A
349. C	350. D	351.B	352. B	353. A	354. A
355. A	356. A	357. D	358.B	359. A	360. A
361. A	362. D	363. C	364. A	365. D	366. A
367. B	368. C	369. B	370. C	371. C	372. D
373. C	374. A	375. B	376. C	377. D	378. D
379. C	380. B	381.B	382. B	383. D	384. D
385. B	386. A	387. C	388. B	389. D	390. C
391. C	392. D	393. C	394. C	395. D	396. A
397. B	398. A	399. C	400. B	401. A	402. C
403.B	404. C	405. A	406. D	407. B	408. C
409. C	410. D	411.B	412. D	413. C	

CHAPTER 9

Nucleic Acids

(D) Adenosine

(B) NAD

(D) FAD

12. The most abundant free nucleotide in

7. The chemical name of guanine is

(A) 2,4-Dioxy-5-methylpyrimidine

	(C) Pur (D) Pu	. ,	base + sugar pase + phosphorous ne base + sugar +		(B) (C) (D)	2-Amino-6-oxypuri 2-Oxy-4-aminopyr 2, 4-Dioxypyrimid	imidine ine
2.	A nucle	eotide consists (of	8.			leic acids concentration essed in terms of
	(B) Pu	nitrogenous base li rine + pyrimidi osphorous	ke choline ne base + sugar +			ng meq	(B) mg (D) OD at 260 nm
		rine or pyrimidine l	base + sugar base + phosphorous	9.		pyrimidine nuc h energy interm	cleotide acting as the rediate is
3.	A puri	ne nucleotide is				ATP	(B) UTP
	(A) AN	ΛP (B) UMP		(C)	UDPG	(D) CMP
	(C) CA	ΛP (D) TMP	10.	The	carbon of the pe	entose in ester linkage
						•	_
4.	A pyrir	midine nucleoti	de is		wit	h the phosphate	in a nucleotide struc-
4.	A pyrir		de is) AMP		wit	h the phosphate e is	in a nucleotide struc-
4.		MP (B			with ture (A)	h the phosphate e is C ₁	e in a nucleotide struc- (B) C_3
	(A) GA	MP (B) AMP		with ture (A) (C)	h the phosphate e is C ₁ C ₄	(B) C ₃ (D) C ₅
	(A) GA (C) CA Adenir	MP (B) AMP	11.	with ture (A) (C)	h the phosphate e is C ₁	(B) C ₃ (D) C ₅

(C) Guanosine

(A) ATP

(C) GTP

mammalian cells is

1. A nucleoside consists of

(A) Nitrogenous base

(C) 2-Oxy-4-aminopyrimidine(D) 2, 4-Dioxypyrimidine

(B) Cystosine(D) Guanine

6. 2, 4-Dioxypyrimidine is

(A) Thymine

(C) Uracil

13.	The mean intracellular concentration of ATP in mammalian cell is about	21.	The nitrogenous base present in the RNA molecule is
	(A) 1 mM (B) 2 mM (C) 0.1 mM (D) 0.2 mM		(A) Thymine (B) Uracil (C) Xanthine (D) Hypoxanthine
14.	The nucleic acid base found in mRNA but not in DNA is	22.	RNA does not contain
	(A) Adenine (B) Cytosine (C) Guanine (D) Uracil		(A) Uracil (B) Adenine (C) Thymine (D) Ribose
15.	In RNA moleule 'Caps'	23.	The sugar moiety present in RNA is
	(A) Allow tRNA to be processed (B) Are unique to eukaryotic mRNA		(A) Ribulose (B) Arabinose (C) Ribose (D) Deoxyribose
	(C) Occur at the 3' end of tRNA	24.	In RNA molecule
16.	(D) Allow correct translation of prokaryotic mRNA In contrast to eukaryotic mRNA, prokaryotic mRNA		(A) Guanine content equals cytosine(B) Adenine content equals uracil(C) Adenine content equals guanine
	(A) Can be polycistronic(B) Is synthesized with introns		(D) Guanine content does not necessarily equa its cytosine content.
	(C) Can only be monocistronic(D) Has a poly A tail	25.	Methylated purines and pyrimidines are characteristically present in
1 <i>7</i> .	The size of small stable RNA ranges from (A) 0–40 nucleotides		(A) mRNA (B) hnRNA (C) tRNA (D) rRNA
	(B) 40–80 nucleotides	26.	Thymine is present in
	(C) 90–300 nucleotides (D) More than 320 nucleotides		(A) tRNA (B) Ribosomal RNA (C) Mammalian mRNA(D) Prokaryotic mRNA
18.	The number of small stable RNAs per cell ranges from	27.	The approximate number of nucleotides in tRNA molecule is
	(A) 10–50,000 (B) 50,000–1,00,000 (C) 1,00,000–10,00,000		(A) 25 (B) 50 (C) 75 (D) 100
10	(D) More than 10 lakhs Molecular weight of heterogenous nuclear	28.	In every cell, the number of tRNA molecules is at least
17.	RNA (hnRNA) is (A) More than 10 ⁷ (B) 10 ⁵ to 10 ⁶		(A) 10 (B) 20 (C) 30 (D) 40
	(C) 10 ⁴ to 10 ⁵ (D) Less than 10 ⁴	29.	The structure of tRNA appears like a
20.	In RNA molecule guanine content does not necessarily equal its cytosine content nor does its adenine content necessarily equal		(A) Helix (B) Hair pin (C) Clover leaf (D) Coil
	its uracil content since it is a (A) Single strand molecule (B) Double stranded molecule (C) Double stranded helical molecule (D) Polymer of purine and pyrimidine ribonucleo-	30.	Although each specific tRNA differs from the others in its sequence of nucleotides, all tRNA molecules contain a base paired stem that terminates in the sequence CCA at (A) 3' Termini (B) 5' Termini
	tides		(C) Anticodon arm (D) 3'5'-Termini

31.	Transfer RNAs are classified on the basis of the number of base pairs in		DNA rich in G-C pairs have		
	(A) Acceptor arm (B) Anticodon arm		(A) 1 Hydrogen bond (B) 2 Hydrogen bonds(C) 3 Hydrogen bonds (D) 4 Hydrogen bonds		
	(C) D arm (D) Extra arm	42.	The fact that DNA bears the genetic		
32.			information of an organism implies that		
	presence of the base:		(A) Base composition should be identical from		
	(A) Uridine (B) Pseudouridine		species to species		
	(C) Dihydrouridine (D) Thymidine		(B) DNA base composition should charge with		
33.	The acceptor arm in the tRNA molecule has		age		
	(A) 5 Base pairs (B) 7 Base pairs		(C) DNA from different tissues in the same		
	(C) 10 Base pairs (D) 20 Base pairs		organism should usually have the same base composition		
34.	In tRNA molecule, the anticodon arm possesses		(D) DNA base composition is altered with nutritional state of an organism		
	(A) 5 Base pairs (B) 7 Base pairs	//3	The width (helical diameter) of the double		
	(C) 8 Base pairs (D) 10 Base pairs	73.	helix in B-form DNA in nm is		
35.	The T ψ C arm in the tRNA molecule		(A) 1 (B) 2		
	possesses the sequence		(C) 3 (D) 4		
	(A) T, pseudouridine and C	44			
	(B) T, uridine and C		The number of base pair in a single turn of B-form DNA about the axis of the		
	(C) T, dihydrouridine and C		molecule is		
	(D) T, adenine and C		(A) 4 (B) 8		
36.	Double helical structure model of the DNA		(C) 10 (D) 12		
	was proposed by		The distance spanned by one turn of B-		
	(A) Pauling and Corey	75.	form DNA is		
	(B) Peter Mitchell		(A) 1.0 nm (B) 2.0 nm		
	(C) Watson and Crick		(C) 3.0 nm (D) 3.4 nm		
	(D) King and Wooten	14	, ,		
37.	DNA does not contain	40.	In a DNA molecule the thymine concentration is 30%, the guanosine concentra-		
	(A) Thymine (B) Adenine		tion will be		
	(C) Uracil (D) Deoxyribose		(A) 10% (B) 20%		
38.	The sugar moiety present in DNA is		(C) 30% (D) 40%		
	(A) Deoxyribose (B) Ribose	47	IN a DNA molecule, the guanosine content		
	(C) Lyxose (D) Ribulose	77.	is 40%, the adenine content will be		
39.	DNA rich in A-T pairs have		(A) 10% (B) 20%		
07.	(A) 1 Hydrogen bond (B) 2 Hydrogen bonds		(C) 30% (D) 40%		
	(C) 3 Hydrogen bonds (D) 4 Hydrogen bonds	40	* * * * * * * * * * * * * * * * * * * *		
		46.	An increased melting temperature of du- plex DNA results from a high content of		
40.	In DNA molecule		(A) Adenine + Guanine		
	(A) Guanine content does not equal cytosine content		(B) Thymine + Cytosine		
	(B) Adenine content does not equal thymine content(C) Adenine content equals uracil content		(C) Cytosine + Guanine		
	(C) Adenine content equals uracil content (D) Guanine content equals cytosine content		(D) Cytosine + Adenine		
	(D) Countille Content Equals Cylosine Collien		· · · / · · · /		

238						////	S IN BIOCHEN	/1131K
49.	A synthetic nucleotide analoxypyrazolopyrimidine is treatment of		i6.	and	ourine biosyn I 5 position of tributed by			
	(A) Acute nephritis			(A)	Glycine	(B)	Glutamine	
	(B) Gout			(C)	Alanine	(D)	Threonine	
	(C) Cystic fibrosis of lung(D) Multiple myeloma		7 .	dro	-formyl and folate contrib			
50.	A synthetic nucleotide analythe chemotherapy of canon				oosition			
	infections is	ter und virur			4 and 6		4 and 5	
	(A) Arabinosyl cytosine			(C)	5 and 6	(D)	2 and 8	
	(B) 4-Hydroxypyrazolopyrimidin (C) 6-Mercaptopurine	ne 5	8.	In purine nucleus nitrogen atom at 1 position is derived from				
	(D) 6-Thioguanine			(A)	Aspartate	(B)	Glutamate	
51.	Histamine is formed from histidine by the			(C)	Glycine	(D)	Alanine	
J 1.	enzyme histidine decarboxylase in the presence of		59.	The key substance in the synthesis o purine, phosphoribosyl pyrophosphate is				
	(A) NAD (B) FMN				med by			
	(C) HS-CoA (D) B_6 -PG	-			α-D-ribose 5-pl	•		
52.	Infantile convulsions due to lesser formation of gamma amino butyric acid from glutamic acid is seen in the deficiency of (A) Glutamate-dehydrogenase (B) Pyridoxine			(C)	5-phospho β-D D-ribose Deoxyribose	-ribosylo	imine	
			60.	mol	ourine biosyn lecule formy osphate requi	l glycii	namide ribo	
	(C) Folic acid			-	ADP		NAD	
	(D) Thiamin				FAD	, ,	ATP and Mg+	+
53.	Which of the following amino acids produce a vasoconstrictor on decarboxylation?		51.	Ring closure of formimidoimidazolo carboxamide ribosyl-5-phosphate yield			azole	
	(A) Histidine (B) Tyros	sine		the	first purine n	ıucleot	ide:	
	(C) Threonine (D) Argin				AMP	, ,	IMP	
54.	The degradation of RNA k	y pancreatic			XMP		GMP	
	ribonuclease produces (A) Nucleoside 2-Phosphates		2.		cofactors re enylosuccinat		I for synthe	sis of
	(B) Nucleoside 5'-phosphates			(A)	ATP, Mg ⁺⁺	(B)	ADP	
	(C) Oligonucleosides			(C)	GTP, Mg ⁺⁺	(D)	GDP	
55.	(D) Nucleoside 3'-phosphate and oligonucleotide		53.		version of inthine monop			
<i>J</i> J.	Intestinal nucleosidases act on nucleo- sides and produce			(A)	IMP dehydrog	-		/
	-	phate only		(B)	Formyl transfer			
		ne or pyrimidine		(C) (D)	•	ine phos	phoribosyl trans syl transferase	sferase

64.	Phosphorylation of adenosine to AMP is catalysed by (A) Adenosine kinase	7 1.	Purine biosynthesis is inhibited by (A) Aminopterin (B) Tetracyclin (C) Methotrexate (D) Chloramphenicol		
	(B) Deoxycytidine kinase(C) Adenylosuccinase(D) Adenylosuccinate synthetase	72.	Pyrimidine and purine nucleoside bio- synthesis share a common precursor:		
65.	The major determinant of the overall rate of denovo purine nucleotide biosynthesis is the concentration of		(A) PRPP (B) Glycine (C) Fumarate (D) Alanine Pyrimidine biosynthesis begins with the		
66.	 (A) 5-phosphoribosyl 1-pyrophosphate (B) 5-phospho β-D-ribosylamine (C) Glycinamide ribosyl-5-phosphate (D) Formylglycinamide ribosyl-5-phosphate An enzyme which acts as allosteric regulator and sensitive to both phosphate 		formation from glutamine, ATP and CO ₂ of (A) Carbamoyl aspartate (B) Orotate (C) Carbamoyl phosphate (D) Dihydroorotate		
	concentration and to the purine nucleotides is (A) PRPP synthetase	74.	The two nitrogen of the pyrimidine ring are contributed by		
	(B) PRPP glutamyl midotransferase(C) HGPR Tase(D) Formyl transferase		(A) Ammonia and glycine(B) Asparate and carbamoyl phosphate(C) Glutamine and ammonia		
67.	PRPP glutamyl amidotransferase, the first enzyme uniquely committed to purine synthesis is feed back inhibited by (A) AMP (B) IMP (C) XMP (D) CMP	75.	(D) Aspartate and ammonia A cofactor in the conversion of dihydro- orotate to orotic acid, catalysed by the enzyme dihydroorotate dehydrogena- se is		
68.	Conversion of formylglycinamide ribosyl- 5-phosphate to formyl-glycinamide ribosyl-5-phosphate is inhibited by		(A) FAD (B) FMN (C) NAD (D) NADP		
	(A) Azaserine (B) Diazonorleucine (C) 6-Mercaptopurine (D) Mycophenolic acid	76.	The first true pyrimidine ribonucleotide synthesized is		
69.	In the biosynthesis of purine nucleotides the AMP feed back regulates		(A) UMP (B) UDP (C) TMP (D) CTP		
	(A) Adenylosuccinase(B) Adenylosuccinate synthetase(C) IMP dehydrogenase(D) HGPR Tase	77.	UDP and UTP are formed by phosphory lation from (A) AMP (B) ADP (C) ATP (D) GTP		
70.	6-Mercapto purine inhibits the conversion of (A) IMP→XMP (B) Ribose 5 phosphate → PRPP	78.	Reduction of ribonucleotide diphosphates (NDPs) to their corresponding deoxy ribonucleotide diphosphates (dNDPs involves		

(A) FMN

(C) NAD

(B) FAD

(D) NADPH

(C) PRPP \rightarrow 5-phospho $\rightarrow \beta$ -D-ribosylamine

(D) Glycinamide ribosyl 5-phosphate → formylglycinamide ribosyl-5-phosphate (240) MCQs IN BIOCHEMISTRY

79.	Conversion of deoxyuridine monophos-
	phate to thymidine monophosphate is
	catalysed by the enzyme:

- (A) Ribonucleotide reductase
- (B) Thymidylate synthetase
- (C) CTP synthetase
- (D) Orotidylic acid decarboxylase

80. d-UMP is converted to TMP by

- (A) Methylation
- (B) Decarboxylation
- (C) Reduction
- Deamination

81. UTP is converted to CTP by

- (A) Methylation
- (B) Isomerisation
- Amination
- (D) Reduction

82. Methotrexate blocks the synthesis of thymidine monophosphate by inhibiting the activity of the enzyme:

- Dihydrofolate reductase
- Orotate phosphoribosyl transferase
- Ribonucleotide reductase
- Dihydroorotase

83. A substrate for enzymes of pyrimidine nucleotide biosynthesis is

- (A) Allopurinol
- (B) Tetracylin
- (C) Chloramphenicol (D) Puromycin

84. An enzyme of pyrimidine nucleotide biosynthesis sensitive to allosteric regulation

- (A) Aspartate transcarbamoylase
- Dihydroorotase
- Dihydroorotate dehydrogenase
- Orotidylic acid decarboxylase

85 An enzyme of pyrimidine nucleotides biosynthesis regulated at the genetic level by apparently coordinate repression and derepression is

- (A) Carbamoyl phosphate synthetase
- Dihydroorotate dehydrogenase
- Thymidine kinase
- Deoxycytidine kinase

86. The enzyme aspartate transcarbamoylase of pyrimidine biosynthesis is inhibited by

- (A) ATP
- (B) ADP (D) CTP
- (C) AMP
- 87. In humans end product of purine catabolism is
 - (A) Uric acid
- (B) Urea
- Allantoin (C)
- (D) Xanthine

88. In humans purine are catabolised to uric acid due to lack of the enzyme:

- Urease
- (B) Uricase
- (C) Xanthine oxidase (D) Guanase

89. In mammals other than higher primates uric acid is converted by

- Oxidation to allantoin
- Reduction to ammonia
- Hydrolysis to ammonia
- Hydrolysis to allantoin

90. The correct sequence of the reactions of catabolism of adenosine to uric acid is

- Adenosine-hypoxanthine-xanthine-uric
- Adenosine-xanthine-inosine-uric acid
- Adenosine inosine hypoxanthine xanthine uric acid
- (D) Adenosine -> xanthine -> inosine -> hypoxanthine uric acid

91. Gout is a metabolic disorder of catabolism

- (A) Pyrimidine
- (B) Purine
- (C) Alanine
- (D) Phenylalanine

92. Gout is characterized by increased plasma levels of

- (A) Urea
- (B) Uric acid
- Creatine
- (D) Creatinine

93. Lesch-Nyhan syndrome, the sex linked recessive disorder is due to the lack of the enzyme:

- (A) Hypoxanthine-guanine phosphoribosyl transferse
- Xanthine oxidase
- Adenine phosphoribosyl transferase
- Adenosine deaminase

94. Lesch-Nyhan syndrome, the sex linked, recessive absence of HGPRTase, may lead to

- (A) Compulsive self destructive behaviour with elevated levels of urate in serum
- (B) Hypouricemia due to liver damage
- (C) Failure to thrive and megaloblastic anemia
- (D) Protein intolerance and hepatic encephalopathy

95. The major catabolic product of pyrimidines in human is

- (A) β-Alanine
- (B) Urea
- (C) Uric acid
- (D) Guanine

96. Orotic aciduria type I reflects the deficiency of enzymes:

- (A) Orotate phosphoribosyl transferase and orotidylate decarboxylase
- (B) Dihydroorotate dehydrogenase
- (C) Dihydroorotase
- (D) Carbamoyl phosphate synthetase

97. Orotic aciduria type II reflects the deficiency of the enzyme:

- (A) Orotate phosphoribosyl transferase
- (B) Orotidylate decarboxylase
- (C) Dihydroorotase
- (D) Dihydroorotate dehydrogenase

98. An autosomal recessive disorder, xanthinuria is due to deficiency of the enzymes:

- (A) Adenosine deaminase
- (B) Xanthine oxidase
- (C) HGPRTase
- (D) Transaminase

Enzymic deficiency in β-aminoisobutyric aciduria is

- (A) Adenosine deaminase
- (B) Xanthine oxidase
- (C) Orotidylate decarboxylase
- (D) Transaminase

100. Polysomes lack in

- (A) DNA
- (B) mRNA
- (C) rRNA
- (D) tRNA

101. Genetic information flows from

- (A) DNA to DNA
- (B) DNA to RNA
- (C) RNA to cellular proteins
- (D) DNA to cellular proteins

102. Genetic code is

- (A) Collection of codon
- (B) Collection of amino acids
- (C) Collection of purine nucleotide
- (D) Collection of pyrimidine nucleotide

103. Degeneracy of genetic code implies that

- (A) Codons do not code for specific amino acid
- (B) Multiple codons must decode the same amino
- (C) No anticodon on tRNA molecule
- (D) Specific codon decodes many amino acids

104. Genetic code is

- (A) Overlapping (B) Non-o
 - (B) Non-overlapping
- (C) Not universal
- (D) Ambiguous

105. mRNA is complementary to the nucleotide sequence of

- (A) Coding strand
- (B) Ribosomal RNA
- (C) tRNA
- (D) Template strand

106. In DNA replication the enzyme required in the first step is

- (A) DNA directed polymerase
- (B) Unwinding proteins
- (C) DNA polymerase
- (D) DNA ligase

107. The smallest unit of DNA capable of coding for the synthesis of a polypeptide is

- (A) Operon
- (B) Repressor gene
- (C) Cistron
- (D) Replicon

108. Termination of the synthesis of the RNA molecule is signaled by a sequence in the template strand of the DNA molecule, a signal that is recognized by a termination protein, the

- (A) Rho (ρ) factor
- (B) σ factor
- (C) δ factor
- (D) ε factor

(242)MCQs IN BIOCHEMISTRY

- 109. After termination of the synthesis of RNA molecule, the core enzymes separate from the DNA template. The core enzymes then recognize a promoter at which the synthesis of a new RNA molecule commences, with the assistance of
 - (A) Rho (ρ) factor
- (B) δ factor
- (C) β factor
- (D) σ factor
- 110. In the process of transcription in bacterial
 - (A) Initiation requires rho protein
 - (B) RNA polymerase incorporates methylated bases in correct sequence
 - Both the sigma unit and core enzymes of RNA polymerase are required for accurate promotor site binding
 - (D) Primase is necessary for initiation

111. The correct statement concerning RNA and **DNA** polymerases is

- (A) RNA polymerase use nucleoside diphosphates
- (B) RNA polymerase require primers and add bases at 5' end of the growing polynucleotide
- (C) DNA polymerases can add nucleotides at both ends of the chain
- (D) All RNA and DNA polymerases can add nucleotides only at the 3' end of the growing polynucleotide chain

112. The eukaryotic nuclear chromosomal DNA

- (A) Is a linear and unbranched molecule
- (B) Is not associated with a specific membranous organelle
- (C) Is not replicated semiconservatively
- (D) Is about of the same size as each prokaryotic chromoses

113. The function of a repressor protein in an operon system is to prevent synthesis by binding to

- (A) The ribosome
- (B) A specific region of the operon preventing transcription of structural genes
- (C) The RNA polymerase
- (D) A specific region of the mRNA preventing translation to protein

114. All pribnow boxes are variants of the sequence:

- (A) 5'-TATAAT -3'
- (B) 5'-GAGCCA-3'
- (C) 5'-UAACAA-3' (D) 5'-TCCTAG-3'

115. 5'-Terminus of mRNA molecule is capped with

- (A) Guanosine triphosphate
- 7-Methylguanosine triphophate
- Adenosine triphosphate
- Adenosine diphosphate

116. The first codon to be translated on mRNA

- (A) AUG
- (B) GGU
- (C) GGA
- (D) AAA

117. AUG, the only identified codon for methionine is important as

- (A) A releasing factor for peptide chains
- (B) A chain terminating codon
- (C) Recognition site on tRNA
- (D) A chain initiating codon

118. In biosynthesis of proteins the chain terminating codons are

- (A) UAA, UAG and UGA
- (B) UGG, UGU and AGU
- (C) AAU, AAG and GAU
- (D) GCG, GCA and GCU

119. The formation of initiation complex during protein synthesis requires a factor:

- (A) IF-III
- (C) EF-II
- (D) IF-I

120. The amino terminal of all polypeptide chain at the time of synthesis in E. coli is tagged to the amino acid residue:

- (A) Methionine
- (B) Serine
- (C) N-formyl methinine (D) N-formal serine

121. Initiation of protein synthesis begins with binding of

- (A) 40 S ribosomal unit on mRNA
- (B) 60S ribosomal unit
- Charging of tRNA with specific amino acid
- Attachment of aminoacyl tRNA on mRNA

122. Initiation of protein synthesis requires

- (A) ATP
- (B) AMP
- (C) GDP
- (D) GTP

123. The enzyme amino acyl tRNA synthetase is involved in

- (A) Dissociation of discharged tRNA from 80S ribosome
- (B) Charging of tRNA with specific amino acids
- (C) Termination of protein synthesis
- (D) Nucleophilic attack on esterified carboxyl group of peptidyl tRNA

124. In the process of activation of amino acids for protein synthesis, the number of high energy phosphate bond equivalent utilised is

- (A) 0
- (B) 1
- (C) 2
- (D) 4

125 Translation results in a product known as

- (A) Protein
- (B) tRNA
- (C) mRNA
- (D) rRNA

126. In the process of elongation of chain binding of amino acyl tRNA to the A site requires

- (A) A proper codon recognition
- (B) GTP
- (C) EF-II
- (D) GDP

127. The newly entering amino acyl tRNA into A site requires

- (A) EF-II
- (B) Ribosomal RNA
- (C) mRNA
- (D) EF-I

128. The α-amino group of the new amino acyl tRNA in the A site carries out a nucleophilic attack on the esterified carboxyl group of the peptidyl tRNA occupying the P site. This reaction is catalysed by

- (A) DNA polymerase
- (B) RNA polymerase
- (C) Peptidyl transferase
- (D) DNA ligase

129. The nucleophilic attack on the esterified carboxyl group of the peptidyl-tRNA occupying the P site and the α-amino group of the new amino acyl tRNA, the number of ATP required by the amino acid on the charged tRNA is

- (A) Zero
- (B) One
- (C) Two
- (D) Four

130. Translocation of the newly formed peptidyl tRNA at the A site into the empty P site involves

- (A) EF-II, GTP
- (B) EF-I, GTP
- (C) EF-I, GDP
- (D) Peptidyl transferase, GTP

131. In eukaryotic cells

- (A) Formylated tRNA is important for initiation of translation
- (B) Cyclohexamide blocks elongation during translation
- (C) Cytosolic ribosomes are smaller than those found in prokaryotes
- (D) Erythromycin inhibits elongation during translation

132. The mushroom poison amanitin is an inhibitor of

- (A) Protein synthesis
- (B) mRNA synthesis
- (C) DNA synthesis
- (D) Adenosine synthesis

133. Tetracylin prevents synthesis of polypeptide by

- (A) Blocking mRNA formation from DNA
- (B) Releasing peptides from mRNA-tRNA complex
- (C) Competing with mRNA for ribosomal binding sites
- (D) Preventing binding of aminoacyl tRNA

134. In prokaryotes, chloramphenicol

- (A) Causes premature release of the polypeptide chain
- (B) Causes misreading of the mRNA
- (C) Depolymerises DNA
- (D) Inhibits peptidyl transferase activity

135	peptide by (A) Inhibiting initiation process (B) Releasing premature polypeptide (C) Inhibiting peptidyl transferase activity	144.	The enzyme DNA ligase (A) Introduces superhelical twists (B) Connects the end of two DNA chains (C) Unwinds the double helix (D) Synthesises RNA primers
124	(D) Inhibiting translocation	145.	Restriction endonucleases
130.	Erythromycin acts on ribosomes and inhibit (A) Formation of initiation complex (B) Binding of aminoacyl tRNA (C) Peptidyl transferase activity		 (A) Cut RNA chains at specific locations (B) Excise introns from hnRNA (C) Remove Okazaki fragments (D) Act as defensive enzymes to protect the host
	(D) Translocation		bacterial DNA from DNA of foreign organisms
137.	The binding of prokaryotic DNA dependent RNA polymerase to promoter sites of genes is inhibited by the antibiotic: (A) Puromycin (B) Rifamycin (C) Terramycin (D) Streptomycin	140.	The most likely lethal mutation is (A) Substitution of adenine for cytosine (B) Insertion of one nucleotide (C) Deletion of three nucleotides
138.		147.	(D) Substitution of cytosine for guanine In the following partial sequence of mRNA, a mutation of the template DNA results in a change in codon 91 to UAA. The type of mutation is
139	The gene of lac operon which has constitutive expression is		88 89 90 91 92 93 94
	(A) i (B) c (C) z (D) p		GUC GAC CAG UAG GGC UAA CCG (A) Missene (B) Silent (C) Nonsense (D) Frame shit
140.	for lac repressor binding is	148.	Restriction endonucleases recognize and cut a certain sequence of
	(A) 5 base pairs (B) 10 base pairs (C) 15 base pairs (D) 17 base pairs		(A) Single stranded DNA (B) Double stranded DNA
141	To commence structural gene transcription the region which should be free on lac operation is		(C) RNA (D) Protein
	(A) Promoter site (B) Operator locus (C) Y gene (D) A gene	149.	Positive control of induction is best described as a control system in which an operon functions
142.	In the lac operon concept, a protein mole- cule is		(A) Unless it is switched off by a derepressed
	(A) Operator (B) Inducer (C) Promoter (D) Repressor		repressor protein (B) Only after a repressor protein is inactivated by an inducer
			,

(C) Only after an inducer protein, which can be

(D) Only after an inducer protein, which is

activated by an inducer, switch it on

inactivated by a corepressor, switches it on

143. The catabolite repression is mediated by

in conjunction with

(A) AMP

(C) cAMP

a catabolite gene activator protein (CAP)

(B) GMP

(D) Cgmp

150. Interferon

- (A) Is virus specific
- (B) Is a bacterial product
- (C) Is a synthetic antiviral agent
- Requires expression of cellular genes

151. Repressor binds to DNA sequence and regulate the transcription. This sequence is called

- (A) Attenuator
- (B) Terminator
- (C) Anti terminator
- (D) Operator

152. Okazaki fragment is related to

- (A) DNA synthesis
- (B) Protein synthesis
- mRNA formation (D) tRNA formation

153. The region of DNA known as TATA BOX is the site for binding of

- (A) DNA polymerase
- (B) DNA topoisomerase
- DNA dependent RNA polymerase
- Polynucleotide phosphorylase

154. Reverse transcriptase is capable of synthesising

- (A) RNA → DNA
- (B) DNA \rightarrow RNA
- (C) $RNA \rightarrow RNA$
- (D) $DNA \rightarrow DNA$

155. A tetrovirus is

- (A) Polio virus
- (B) HIV
- (C) Herpes virus
- (D) Tobacco mosaic virus

156. Peptidyl transferase activity is located in

- (A) Elongation factor
- (B) A charged tRNA molecule
- (C) Ribosomal protein
- (D) A soluble cytosolic protein

157. Ultraviolet light can damage a DNA strand causing

- (A) Two adjacent purine residue to form a covalently bounded dimer
- (B) Two adjacent pyrimidine residues to form covalently bonded dimer
- Disruption of phosphodiesterase linkage
- Disruption of non-covalent linkage

158. Defective enzyme in Hurler's syndrome is

- (A) α-L-diuronidase
- Iduronate sulphatase
- Arylsulphatase B (C)
- C-acetyl transferase

159. Presence of arginine can be detected by

- (A) Sakaguchi reaction
- (B) Million-Nasse reaction
- (C) Hopkins-Cole reaction
- (D) Gas chromatography

160. A nitrogenous base that does not occur in mRNA is

- (A) Cytosine (B) Thymine
- (D) All of these (C) Uracil

161. In nucleotides, phosphate is attached to sugar by

- (A) Salt bond
- (B) Hydrogen bond
- (C) Ester bond
- (D) Glycosidic bond

162. Cyclic AMP can be formed from

- (A) AMP
- (B) ADP
- (C) ATP
- (D) All of these

163. A substituted pyrimidine base of pharmacological value is

- (A) 5-lododeoxyuridine
- (B) Cytisine arabinoside
- (C) 5-Fluorouracil
- (D) All of these

164 The 'transforming factor' discovered by Avery, McLeod and McCarty was later found to be

- (A) mRNA
- (B) tRNA
- DNA (C)
- (D) None of these

165. In DNA, the complementary base of adenine is

- Guanine (A)
- (B) Cytosine
- (C) Uracil
- (D) Thymine

166. In DNA, three hydrogen bonds are formed between

- (A) Adenine and guanine
- (B) Adenine and thymine
- Guanine and cytosine
- (D) Thymine and cytosine

167.	67. Left handed double helix is present in				177.	The number of hydrogen bonds between adenine and thymine in DNA is			
		Z-DNA B-DNA	. ,	A-DNA None of these			One		Two
140			. ,			(C)	Three	(D)	Four
168.	wit	h		nt in combination	178.		complementar A is	y b	ase of adenine in
		Histones Both (A) and (B)		Non-histones None of these			Thymine Guanine		Cystosine Uracil
169.		mber of guanine qual in	and	d cytosine residues	179.	Ext	ranuclear DNA i		
		mRNA DNA	٠,	tRNA None of these		(B)	Ribosomes Endoplasmic retic Lysosomes	ulum	ı
1 <i>7</i> 0.	Alk	alis cannot hyd	roly	rse			Mitochondria		
	(A)	mRNA	(B)	tRNA	180.	Mit	ochondrial DNA	is p	present in
171		rRNA Ions are presen		DNA		(A)	Bacteria Eukaryotes	(B)	Viruses All of these
17 1.		Template strand o		JΔ	181		othymidine is p		
	(B)	mRNA	יוט וי	NA	101.	(A)	DNA rRNA	(B)	tRNA hnRNA
	(D)	rRNA			182.	Ten			sent in one turn of
1 72 .		ino acid is attac					A-DNA	/RI	B-DNA
		5'-End		3'-End			C-DNA	٠,	Z-DNA
		Anticodon		DHU loop	183.	` '	nsfer RNA trans		
1 <i>7</i> 3.	In pare	-	e ri	bosomal subunits			Information from [
	(A)	30 S and 40 S 30 S and 50 S		40 S and 50 S 40 S and 60 S		(B)	Information from n Amino acids from Proteins from ribos	nRN. cyto	A to cytosol sol to ribosomes
1 <i>7</i> 4.	Rib	ozymes are			184		amidase is defi		•
		Enzymes present in Enzymes which subunits		osomes nbine the ribosomal		(A)	Fabry's disease	(B)	
		Enzymes which di Enzymes made u			185.		amide is present	t in (all of the following
175.				ng the following is			Plasmalogens		Cerebrosides
		rRNA		hnRNA		(C)	Sulphatides		Sphingomyelin
		mRNA		tRNA	186.		cleotides require :leic acids can be		or the synthesis of tained from
176.		number of ader	ine	and thymine bases		(A)	Dietary nucleic ac		and nucleotides
		DNA	(D1	mRNA		(B) (C)	De novo synthesis Salvage of pre-exis		bases and nucleosides
	(C)	tRNA	. ,	rRNA		(D)	De novo synthesis		

(D) Adenylosuccinase

107.	occurs in	or porme nocieonae	190.			_	nthesis excep	
	(A) Mitochondria(C) Microsmes	(B) Cytosol (D) Ribosomes			PRPP synthetase PRPP glutamyl o		ransferase	
188.	of purine nucleotid	• •		(C) (D)		•	hetase	
	(A) Aspartate and glu(B) Aspartate and gly(C) Aspartate, glutam(D) Aspartate, glutam	cine iine and glycine	197.	by	PP synthetase AMP		sterically inhib ADP	ited
189		nesis of purine nucle-	102		GMP	, ,	All of these of PRPP gluta	ımvl
	(A) One nitrogen ator (B) One nitrogen and (C) Two carbon atoms (D) One nitrogen and	m I one carbon atom s	170.	am (A)	ido transferas AMP GMP	se is (B)	ADP All of these	yı
190.		esis of purine nucle-	199.	syn	nthetase is	oitor of	f adenylosuccii	nate
	(A) Nitrogen 1	(B) Nitrogen 3 (D) Nitrogen 9		. ,	AMP GMP		ADP GDP	
191.	, ,	us, carbon 6 is contrib-	200.		allosteric inhi se is	bitor c	of IMP dehydro	oge-
	(A) Glycine (C) Aspartate	(B) CO ₂ (D) Glutamine			AMP GMP		ADP GDP	
192.	5-Phosphoribosyl required for the sy	-1-pyrophosphate is nthesis of	201.		IP is an allostowing except		nhibitor of all	the
	(A) Purine nucleotides (C) Both (A) and (B)	(B) Pyrimidine nucleotides (D) None of these		(A) (B)	PRPP synthetase		synthetase	
193.	Inosine monophoph during the de novo	nate is an intermediate synthesis of		(C) (D)	IMP dehydroge Adenylosuccine		hetase	
	(A) AMP and GMP (C) CMP and TMP	(B) CMP and UMP (D) All of these	202.		AP is an alloste		nibitor of	
194.	intermediate during (A) TMP	g de novo synthesis of (B) CMP		(B) (C)	Adenylosuccian Both (A) and (B None of these	nte syntl	hetase	
195.	purine nucleotides,	(D) GMP de novo synthesis of all the following are	203.	The		-	e to purine nuc sed by	leo-
	(A) PRPP glutamyl am (B) Adenylosuccinate (C) IMP dehydrogeno	ido transferase synthetase		(A) (B) (C) (D)	PRPP synthetase PRPP glutamyl of Phosphoribosyl Formyl transfero	amido t glycino	ransferase amide synthetase	

(D) Formyl transferase

204. Free purine bases which can be salvaged are

- (A) Adenine and guanine
- (B) Adenine and hypoxanthine
- (C) Guanine and hypoxanthine
- (D) Adenine, guanine and hypoxanthine

205. The enzyme required for salvage of free purine bases is

- (A) Adenine phosphoribosyl transferase
- (B) Hypoxanthine guanine phosphoribosyl transferase
- (C) Both (A) and (B)
- (D) None of these

206. Deoxycytidine kinase can salvage

- (A) Adenosine
- (B) Adenosine and deoxyadenosine
- (C) Adenosine and guanosine
- (D) Adenine and adenosine

207. Adenosine kinase can salvage

- (A) Adenosine
- (B) Adenosine and deoxyadenosine
- (C) Adenosine and guanosine
- (D) Adenine and adenosine

208. Salvage of purine bases is regulated by

- (A) Adenosine phosphoribosyl transferase
- (B) Hypoxanthine guanine phosphoribosyl transferase
- (C) Availability of PRPP
- (D) None of these

209. The available PRPP is used preferentially for

- (A) De novo synthesis of purine nucleotides
- (B) De novo synthesis of pyrimidine nucleotides
- (C) Salvage of purine bases
- (D) Salvage of pyrimidine bases

210. The end product of purine catabolism in man is

- (A) Inosine
- (B) Hypoxanthine
- (C) Xanthine
- (D) Uric acid

211. The enzyme common to catabolism of all the purines is

- (A) Adenosine deaminase
- (B) Purine nucleoside phosphorylase
- (C) Guanase
- (D) None of these

212. Uric acid is the end product of purine as well as protein catabolism in

- (A) Man
- (B) Fish
- (C) Birds
- (D) None of these

213. Daily uric acid excretion in adult men is

- (A) 2-6 mg
- (B) 20-40 mg
- (C) 150-250 mg
- (D) 40-600 mg

214. Dietary purines are catabolised in

- (A) Liver (B)
 - (B) Kidneys
- (C) Intesitnal mucosa (D) All of these
- 215. De novo synthesis of pyrimidine nucleotides occurs in
 - (A) Mitochondria
- (B) Cytosol
- (C) Microsomes
- (D) Ribosomes

216. An enzyme common to de novo synthesis of pyrimidine nucleotides and urea is

- (A) Urease
- (B) Carbamoyl phosphate synthetase
- (C) Aspartate transcarbamoylase
- (D) Argininosuccinase

217. The nitrogen atoms of pyrimidine nucleus are provided by

- (A) Glutamate
- (B) Glutamate and aspartate
- (C) Glutamine
- (D) Glutamine and aspartate

218. The carbon atoms of pyrimidine nucleus are provided by

- (A) Glycine and aspartate
- (B) CO₂ and aspartate
- (C) CO₂ and glutamate
- (D) CO₂ and glutamine

219.	Nitrogen at position cleus comes from	on 1 of pyrimidine nu-	228.	For the synthesis of TMP from dump, coenzyme is required which is
220	(A) Glutamine (C) Glycine	(B) Glutamate (D) Aspartate on 3 of pyrimidine nu-		 (A) N¹⁰- Formyl tetrahydrofolate (B) N⁵- Methyl tetrahydrofolate (C) N⁵, N¹⁰- Methylene tetrahydrofolate
220.	cleus comes from			(D) N ⁵ - Formimino tetrahydrofolate
	(A) Glutamine (C) Glycine	(B) Glutamate(D) Aspartate	229.	All the enzymes required for de nove synthesis of pyrimidine nucleotides are
221.	The carbon atom of dine nucleus is con	it position 2 of pyrimi- atributed by		cytosolic except
	(A) CO ₂ (C) Aspartate	(B) Glycine (D) Glutamine		(A) Carbamoyl phosphate synthetase(B) Aspartate transcarbamoylase(C) Dihydro-orotase
222.		butes the following		(D) Dihydro-orotate dehydrogenase
	(A) C_2 and C_4 (C) C_2 , C_4 and C_6	(B) C_5 and C_6 (D) C_4 , C_5 and C_6	230.	During de novo synthesis of pyrimidine nucleotides, the first ring compound to be formed is
223.	formed in de novo	ine nucleotide to be synthesis pathway is (B) CMP		(A) Carbamoyl aspartic acid(B) Dihydro-orotic acid
	(A) UMP (C) CTP	(D) TMP		(C) Orotic acid(D) Orotidine monophosphate
224.		dine diphosphate into hosphate requires all pt	231.	Tetrahydrofolate is required as a coen- zyme for the synthesis of
	(A) Ribonucleotide re (B) Thioredoxin	eductase		(A) UMP (B) CMP (C) TMP (D) All of these
	(C) Tetrahydrobiopter(D) NADPH	rin	232.	All of the following statements about thioredoxin reductase are true except:
225.		aminopterin decrease		(A) It requires NADH as a coenzyme
	the synthesis of (A) TMP	(B) UMP		(B) Its substrates are ADP, GDP, CDP and UDP(C) It is activated by ATP
	(C) CMP	(D) All of these		(D) It is inhibited by dADP
226.	group comes from	TP and UTP, the amino	233.	De novo synthesis of pyrimidine nucleotides is regulated by
	(A) Amide group of (B) Amide group of (Control of the control of t			(A) Carbamoyl phosphate synthetase
	(C) α-Amino group ο(D) α-Amino group ο	f glutamine		(B) Aspartate transcarbamoylase(C) Both (A) and (B)(D) None of these
227.	CTP synthetase for	ms CTP from	234.	
	(A) CDP and inorgan(B) CDP and ATP(C) UTP and glutamin(D) UTP and glutama	ne	497.	tase is inhibited by (A) UTP (B) CTP (C) PRPP (D) TMP
	(D) UTP and glutame	ale.		

235.		osolic carbo tase is activa	244.	All the f			
	(A)	Glutamine	(B)	PRPP		(A)	Its inhe
	(C)	ATP	(D)	Aspartate		(B)	It can
236.	Asp	oartate transc	arbam	oylase is inhibited		(0)	synthe

236. Aspartate transcarbamoylase is inhibited by

(A) CTP (B) PRPP (C) ATP (D) TMP

237. The following cannot be salvaged in human beings:

(A) Cytidine (B) Deoxycytidine (C) Cytosine (D) Thymidine

238. β-Aminoisobytyrate is formed from catabolism of

(A) Cytosine (B) Uracil
(C) Thymine (D) Xanthine

239. Free ammonia is liberated during the catabolism of

(A) Cytosine (B) Uracil
(C) Thymine (D) All of these

240. β -Alanine is formed from catabolism of

(A) Thymine

(B) Thymine and cytosine

(C) Thymine and uracil

(D) Cytosine and uracil

241. The following coenzyme is required for catabolism of pyrimidine bases:

(A) NADH

(B) NADPH

(C) FADH₂ (D) None of these

242. Inheritance of primary gout is

(A) Autosomal recessive

(B) Autosomal dominant

(C) X-linked recessive

(D) X-linked dominant

243. The following abnormality in PRPP synthetase can cause primary gout:

(A) High V_{max}

(B) Low K_m

(C) Resistance to allosteric inihbition.

(D) All of these

244. All the following statements about primary gout are true except

(A) Its inheritance is X-linked recessive

- (B) It can be due to increased activity of PRPP synthetase
- (C) It can be due to increased activity of hypoxanthine guanine phosphoribosyl transferase
- D) De novo synthesis of purines is increased in it

245. All of the following statements about uric acid are true except

(A) It is a catabolite of purines

(B) It is excreted by the kidneys

(C) It is undissociated at pH above 5.8

(D) It is less soluble than sodium urate

246. In inherited deficiency of hypoxanthine guanine phosphoribosyl transferase

- (A) De novo synthesis of purine nucleotides is decreased
- (B) Salvage of purines is decreased
- (C) Salvage of purines is increased
- (D) Synthesis of uric acid is decreased

247. All of the following statements about uric acid are true except

- (A) It can be formed from allantoin
- (B) Formation of uric acid stones in kidneys can be decreased by alkalinisation of urine
- (C) Uric acid begins to dissociate at pH above 5.8
- (D) It is present in plasma mainly as monosodium

248. All of the following statements about primary gout are true except

- (A) Uric acid stones may be formed in kidneys
- (B) Arthritis of small joints occurs commonly
- (C) Urinary excretion of uric acid is decreased
- (D) It occurs predominantly in males

249. All of the following statements about allopurinol are true except

- (A) It is a structural analogue of uric acid
- (B) It can prevent uric acid stones in the kidneys
- (C) It increases the urinary excretion of xanthine and hypoxanthine
- (D) It is a competitive inhibitor of xanthine oxidase

250. Orotic aciduria can be controlled by

- (A) Oral administration of orotic acid
- Decreasing the dietary intake of orotic acid
- Decreasing the dietary intake of pyrimidines
- (D) Oral administration of uridine

251. All of the following occur in orotic aciduria except

- (A) Increased synthesis of pyrimidine nucleotides
- (B) Increased excretion of orotic acid in urine
- Decreased synthesis of cytidine triphosphate
- (D) Retardation of growth

252. Inherited deficiency of adenosine deaminase causes

- (A) Hyperuricaemia and gout
- (B) Mental retardation
- (C) Immunodeficiency
- (D) Dwarfism

253. Complete absence of hypoxanthine guanine phospharibosyl transferase causes

- Primary gout
- (B) Immunodeficiency
- - Uric acid stones (D) Lesh-Nyhan syndrome

254. Increased urinary excretion of orotic acid can occur in deficiency of

- (A) Orotate phosphoribosyl transferase
- (B) OMP decarboxylase
- (C) Mitochondrial ornithine transcarbamoylase
- (D) Any of the above

255. All of the following can occur in Lesch-Nyhan syndrome except

- (A) Gouty arthritis
- (B) Uric acid stones
- (C) Retarted growth
- (D) Self-mutiliating behaviour

256. Inherited deficiency of purine nucleoside phosphorylase causes

- (A) Dwarfism
- (B) Mental retardation
- (C) Immunodeficiency (D) Gout

257. Deoxyribonucleotides are formed by reduction of

(A) Ribonucleosides

- Ribonucleoside monophosphates
- Ribonucleoside diphosphates
- Ribonucleoside triphosphates

258. An alternate substrate for orotate phosphoribosyl transferase is

- (A) Allopurinol
- (B) Xanthine
- (C) Hypoxanthine
- (D) Adenine

Mammals other than higher primates do not suffer from gout because they

- (A) Lack xanthine oxidase
- (B) Lack adenosine deaminase
- (C) Lack purine nucleoside phosphorylase
- Possess uricase

260. Hypouricaemia can occur in

- (A) Xanthine oxidase deficiency
- (B) Psoriasis
- (C) Leukaemia
- (D) None of these

261. Synthesis of DNA is also known as

- (A) Duplication
- (B) Replication
- (C) Transcription
- (D) Translation

262. Replication of DNA is

- (A) Conservative
- (B) Semi-conservative
- (C) Non-conservative (D) None of these

263. Direction of DNA synthesis is

- (A) $5' \rightarrow 3'$
- (B) $3' \rightarrow 5'$
- (C) Both (A) and (B) (D) None of these

264. Formation of RNA primer:

- (A) Precedes replication
- (B) Follows replication
- (C) Precedes transcription
- (D) Follows transcription

265. Okazaki pieces are made up of

- (A) RNA
- (B) DNA
- (C) RNA and DNA
- (D) RNA and proteins

266. Okazaki pieces are formed during the synthesis of

- (A) mRNA
- (B) tRNA
- (C) rRNA
- (D) DNA

267. After formation of replication fork

- (A) Both the new strands are synthesized discontinuously
- (B) One strand is synthesized continuously and the other discontinuously
- (C) Both the new strands are synthesized continuously
- RNA primer is required only for the synthesis of one new strand

268. An Okazaki fragment contains about

- (A) 10 Nucleotides
- (B) 100 Nucleotides
- (C) 1,000 Nucleotides
- (D) 10,000 Nucleotides

269. RNA primer is formed by the enzyme:

- (A) Ribonuclease
- (B) Primase
- (C) DNA polymerase I (D) DNA polymerase III

270. In RNA, the complementary base of adenine is

- (A) Cytosine
- (B) Guanine
- (C) Thymine
- (D) Uracil

271. During replication, the template DNA is unwound

- (A) At one of the ends (B) At both the ends
- (C) At multiple sites (D) Nowhere

272. During replication, unwinding of double helix is initiated by

- (A) DNAA protein
- (B) DnaB protein
- (C) DNAC protein
- (D) Rep protein

273. For unwinding of double helical DNA,

- (A) Energy is provided by ATP
- (B) Energy is provided by GTP
- (C) Energy can be provided by either ATP or GTP
- (D) No energy is required

274. Helicase and DNAB protein cause

- (A) Rewinding of DNA and require ATP as a source of energy
- (B) Rewinding of DNA but do not require any source of energy
- (C) Unwinding of DNA and require ATP as a source of energy
- (D) Unwinding of DNA but do not require any source of energy

275. The unwound strands of DNA are held apart by

- (A) Single strand binding protein
- (B) Double strand binding protein
- (C) Rep protein
- (D) DNAA protein

276. Deoxyribonucleotides are added to RNA primer by

- (A) DNA polymerase I
- (B) DNA polymerase II
- (C) DNA polymerase III holoenzyme
- (D) All of these

277. Ribonucleotides of RNA primer are replaced by deoxyribonucleotides by the enzyme:

- (A) DNA polymerase I
- (B) DNA polymerase II
- (C) DNA polymerase III holoenzyme
- (D) All of these

278. DNA fragments are sealed by

- (A) DNA polymerase II
- (B) DNA ligase
- (C) DNA gyrase
- (D) DNA topoisomerase II

279. Negative supercoils are introduced in DNA by

- (A) Helicase
- (B) DNA ligase
- (C) DNA gyrase
- (D) DNA polymerase III holoenzyme

280. Reverse transcriptase activity is present in the eukaryotic:

- (A) DNA polymerase α
- (B) DNA polymerase γ
- (C) Telomerase
- (D) DNA polymerase II

281. DNA polymerase III holoenzyme possesses

- (A) Polymerase activity
- (B) $3' \rightarrow 5'$ Exonuclease activity
- (C) $5' \rightarrow 3'$ Exonuclease and polymerase activities
- (D) $3' \rightarrow 5'$ Exonuclease and polymerase activities

282. DNA polymerase I possesses

- (A) Polymerase activity
- (B) $3' \rightarrow 5'$ Exonuclease activity
- (C) $5' \rightarrow 3'$ Exonuclease activity
- (D) All of these

283. 3'→5' Exonuclease activity of DNA polymerase I

- (A) Removes ribonucleotides
- (B) Adds deoxyribonucleotides
- (C) Corrects errors in replication
- (D) Hydrolyses DNA into mononucleotides

284. All of the following statements about RNA-dependent DNA polymerase are true

- (A) It synthesizes DNA using RNA as a template
- (B) It is also known as reverse transcriptase
- It synthesizes DNA in $5'\rightarrow 3'$ direction
- (D) It is present in all the viruses

285. Reverse transcriptase catalyses

- (A) Synthesis of RNA
- Breakdown of RNA
- (C) Synthesis of DNA
- (D) Breakdown of DNA

286. DNA A protein can bind only to

- (A) Positively supercoiled DNA
- (B) Negatively supercoiled DNA
- (C) Both (A) and (B)
- (D) None of these

287. DNA topoisomerase I of E. coli catalyses

- (A) Relaxation of negatively supercoiled DNA
- (B) Relaxation of positively supercoiled DNA
- (C) Conversion of negatively supercoiled DNA into positively supercoiled DNA
- Conversion of double helix into supercoiled

288. In mammalian cell cycle, synthesis of DNA occurs during

- (A) S phase
- (B) G₁ phase
- (C) Mitotic Phase
- (D) G₂ phase

289. Melting temperature of DNA is the temperature at which

- (A) Solid DNA becomes liquid
- Liquid DNA evaporates
- DNA changes from double helix into supercoiled DNA
- Native double helical DNA is denatured

290. Melting temperature of DNA is increased by its

- (A) A and T content
- (B) G and C content
- (C) Sugar content
- (D) Phosphate content

291. Buoynat density of DNA is increased by

- (A) A and T content
- (B) G and C content
- Sugar content
- (D) None of these

292. Relative proportions of G and C versus A and T in DNA can be determined by its

- (A) Melting temperature
- **Buoyant density**
- (C) Both (A) and (B)
- (D) None of these

293. Some DNA is present in mitochondria of

- (A) Prokaryotes
- (B) Eukaryotes
- (C) Both (A) and (B)
- (D) None of these

294. Satellite DNA contains

- (A) Highly repetitive sequences
- (B) Moderately repetitive sequences
- Non-repetitive sequences
- (D) DNA-RNA hybrids

295. Synthesis of RNA and a DNA template is known as

- (A) Replication
- (B) Translation
- (C) Transcription
- (D) Mutation

296. Direction of RNA synthesis is

- (A) $5' \rightarrow 3'$
- (B) $3' \rightarrow 5'$
- (C) Both (A) and (B) (D) None of these

297. DNA-dependent RNA polymerase is a

- (A) Monomer
- (B) Dimer
- (C) Trimer
- (D) Tetramer

298.	DNA-dependent RNA polymerase requires the following for its catalytic activity:		(B) Methylation of some bases(C) Formation of pseudouridine
	(A) Mg ⁺⁺ (B) Mn ⁺⁺		(D) Addition of C-C-A terminus at 5' end
	(C) Both (A) and (B) (D) None of these	307.	Post-transcriptional modification does no occur in
299.	The initiation site for transcription is recognized by		(A) Eukaryotic tRNA (B) Prokaryotic tRNA (C) Eukaryotic hnRNA (D) Prokaryotic mRNA
	(A) α-Subunit of DNA-dependent RNA polymerase	308.	
	(B) β-Subunit of DNA-dependent RNA polymerase(C) Sigma factor	500.	box, is the site for attachment of
	(D) Rho factor		(A) RNA-dependent DNA polymerase
300.	The termination site for transcription is		(B) DNA-dependent RNA polymerase (C) DNA-dependent DNA polymerase
	recognized by		(D) DNA topoisomerase II
	 (A) α-Subunit of DNA-dependent RNA polymerase (B) β-Subunit of DNA-dependent RNA polymerase 	309.	Polyadenylate tail is not present in mRNA synthesising
	(C) Sigma factor (D) Rho factor		(A) Globin (B) Histone
			(C) Apoferritin (D) Growth hormone
301.	Mammalian RNA polymerase I synthesises	310.	Introns are present in DNA of
	(A) mRNA (B) rRNA (C) tRNA (D) hnRNA		(A) Viruses (B) Bacteria
202			(C) Man (D) All of these
302.	Mammalian RNA polymerase III synthesises (A) rRNA (B) mRNA (C) tRNA (D) hnRNA	311.	A mammalian DNA polymerase among the following is
202	, ,		(A) DNA polymerase α
303.	In mammals, synthesis of mRNA is catalysed by		(B) DNA polymerase I
	(A) RNA polymerase I (B) RNA polymerase II		(C) DNA polymerase II
	(C) RNA polymerase III (D) RNA polymerase IV		(D) DNA polymerase IV
304.	Heterogeneous nuclear RNA is the precursor of	312.	Mammalian DNA polymerase γ is located in
	(A) mRNA (B) rRNA		(A) Nucleus (B) Nucleolus
	(C) tRNA (D) None of these		(C) Mitochondria (D) Cytosol
305.	Post-transcriptional modification of hnRNA involves all of the following except	313.	is catalysed by
	(A) Addition of 7-methylguanosine triphosphate cap		(A) DNA polymerase α (B) DNA polymerase β
	(B) Addition of polyadenylate tail		(C) DNA polymerase γ
	(C) Insertion of nucleotides		(D) DNA polymerase III
	(D) Deletion of introns	314.	Primase activity is present in
306.	Newly synthesized tRNA undergoes post- transcriptional modifications which include all the following except		(A) DNA polymerase II (B) DNA polymerase α
	(A) Reduction in size		(C) DNA polymerase β
	(7) REGUCTION IN SIZE		IDI DNIA polymoraca S

(D) DNA polymerase δ

315. The mammalian DNA polymerase involved in error correction is

- (A) DNA polymerase α
- (B) DNA polymerase β
- (C) DNA polymerase γ
- (D) DNA polymerase δ

316. Novobicin inhibits the synthesis of

- (A) DNA
- (B) mRNA
- (C) tRNA
- (D) rRNA

317. Ciprofloxacin inhibits the synthesis of

- (A) DNA
- (B) mRNA
- (C) tRNA
- (D) rRNA

318. Ciprofloxacin inhibits

- (A) DNA topisomerase II
- (B) DNA polymerase I
- (C) DNA polymerase III
- (D) DNA gyrase

319. Rifampicin inhibits

- (A) Unwinding of DNA
- (B) Initiation of replication
- (C) Initiation of translation
- (D) Initiation of transcription

320. Actinomycin D binds to

- (A) Double stranded DNA
- (B) Single stranded DNA
- (C) Single stranded RNA
- (D) DNA-RNA hybrid

321. DNA contains some palindromic sequences which

- (A) Mark the site for the formation of replication
- (B) Direct DNA polymerase to turn back to replicate the other strand
- (C) Are recognized by restriction enzymes
- (D) Are found only in bacterial DNA

322. Introns in genes

- (A) Encode the amino acids which are removed during post-translational modification
- (B) Encode signal sequences which are removed before secretion of the proteins
- (C) Are the non-coding sequences which are not translated

(D) Are the sequences that intervene between two genes

323. All of the following statements about post-transcriptional processing of tRNA are true except

- (A) Introns of some tRNA precursors are removed
- (B) CCA is added at 3' end
- (C) 7-Methylguanosine triphosphate cap is added at 5' end
- (D) Some bases are methylated

324. α-Amanitin inhibits

- (A) DNA polymerase II of prokaryotes
- (B) DNA polymerase α of eukaryotes
- (C) RNA polymerase II of eukaryotes
- (D) RNA-dependent DNA polymerase

325. Ciprofloxacin inhibits the synthesis of

- (A) DNA in prokaryotes
- (B) DNA in prokaryotes and eukaryotes
- (C) RNA in prokaryotes
- (D) RNA in prokaryotes and eukaryotes

326. All of the following statements about bacterial promoters are true except

- (A) They are smaller than eukaryotic promoters
- (B) They have two consensus sequences upstream from the transcription star site
- (C) TATA box is the site for attachment of RNA polymerase
- (D) TATA box has a high melting temperature

327. All of the following statements about eukaryotic promoters are true except

- (A) They may be located upstream or down stream from the structural gene
- (B) They have two consensus sequences
- (C) One consensus sequence binds RNA polymerase
- (D) Mutations in promoter region can decrease the efficiency of transcription of the structural gene

328. In sanger's method of DNA sequence determination, DNA synthesis is stopped by using

- (A) 1', 2'- Dideoxyribonucleoside triphosphates
- (B) 2', 3'- Dideoxyribonucleoside triphosphates
- (C) 2', 4'- Dideoxyribonucleoside triphosphates
- (D) 2', 5' Dideoxyribonucleoside triphosphates

329. tRNA genes have

- (A) Upstream promoters
- (B) Downstream promoters
- (C) Intragenic promoters
- (D) No promoters

330. All of the following statements about tRNA are true except

- (A) It is synthesized as a large precursor
- (B) It is processed in the nucelolus
- (C) It has no codons or anticodons
- (D) Genes for rRNA are present in single copies

331. Anticodons are present on

- (A) Coding strand of DNA
- (B) mRNA
- (C) tRNA
- (D) rRNA

332. Codons are present on

- (A) Non-coding strand of DNA
- (B) hnRNA
- (C) tRNA
- (D) None of these

333. Nonsense codons are present on

- (A) mRNA
- (B) tRNA
- (C) rRNA
- (D) None of these

334. Genetic code is said to be degenerate because

- (A) It can undergo mutations
- (B) A large proportion of DNA is non-coding
- (C) One codon can code for more than one amino
- (D) More than one codons can code for the same amino acids

335. All the following statements about genetic code are correct except

- (A) It is degenerate (B) It is unambigous
- (C) It is nearly universal(D) It is overlapping

336. All of the following statements about nonsense codons are true except

- (A) They do not code for amino acids
- (B) They act as chain termination signals

- (C) They are identical in nuclear and mitochondrial DNA
- (D) They have no complementary anticodons

337. A polycistronic mRNA can be seen in

- (A) Prokaryotes
- (B) Eukaryotes
- (C) Mitochondria
- (D) All of these

338. Non-coding sequence are present in the genes of

- (A) Bacteria
- (B) Viruses
- (C) Eukaryotes
- (D) All of these

339. Non-coding sequences in a gene are known as

- (A) Cistrons
- (B) Nonsense codons
- (C) Introns
- (D) Exons

340. Splice sites are present in

- (A) Prokaryotic mRNA (B) Eukaryotic mRNA
- (C) Eukaryotic hnRNA (D) All of these

341. The common features of introns include all the following except

- (A) The base sequence begins with GU
- (B) The base sequence ends with AG
- (C) The terminal AG sequence is preceded by a purine rich tract of ten nucleotides
- (D) An adenosine residue in branch site participates in splicing

342. A splice some contains all the following except

- (A) hnRNA
- (B) snRNAs
- (C) Some proteins
- (D) Ribosome

343. Self-splicing can occur in

- (A) Some precursors of rRNA
- (B) Some precursors of tRNA
- (C) hnRNA
- (D) None of these

344. Pribnow box is present in

- (A) Prokaryotic promoters
- (B) Eukaryotic promoters
- (C) Both (A) and (B)
- (D) None of these

345. Hogness box is present in

(A) Prokaryotic promoters

- Eukaryotic promoters
- Both (A) and (B) (C)
- (D) None of these

346. CAAT box is present in

- (A) Prokaryotic promoters 10 bp upstream of transcription start site
- Prokaryotic promoters 35 bp upstream of transcription start site
- (C) Eukaryotic promoters 25 bp upstream of transcription start site
- (D) Eukaryotic promoters 70–80 bp upstream of transcription start site

347. Eukaryotic promoters contain

- (A) TATA box 25bp upstream of transcription start
- (B) CAAT box 70-80 bp upstream of transcription start site
- (C) Both (A) and (B)
- (D) None of these

348. All the following statements about tRNA are correct except

- (A) A given tRNA can be charged with only one particular amino acid
- (B) The amino acid is recognized by the anticodon of tRNA
- (C) The amino acid is attached to end of tRNA
- (D) The anticodon of tRNA finds the complementary codon on mRNA

349. All the following statements about charging of tRNA are correct except

- (A) It is catalysed by amino acyl tRNA synthetase
- (B) ATP is converted into ADP and Pi in this
- (C) The enzyme recognizes the tRNA and the amino acid
- (D) There is a separate enzyme for each tRNA

350. All the following statements about recognition of a codon on mRNA by an anticodon on tRNA are correct except

- (A) The recognition of the third base of the codon is not very precise
- Imprecise recognition of the third base results in wobble
- (C) Wobble is partly responsible for the degeneracy of the genetic code

(D) Wobble results in incorporation of incorrect amino acids in the protein

351. The first amino acyl tRNA which initiates translation in eukaryotes is

- (A) Mehtionyl tRNA
- (B) Formylmethionyl tRNA
- (C) Tyrosinyl tRNA
- (D) Alanyl tRNA

352. The first amino acyl tRNA which initiates translation in prokaryotes is

- (A) Mehtionyl tRNA
- Formylmethionyl tRNA
- (C) Tyrosinyl tRNA
- (D) Alanyl tRNA

353. In eukaryotes, the 40 S pre-initiation complex contains all the following initiation factors except

- (A) eIF-1A
- (B) eIF-2
- (C) eIF-3
- (D) eIF-4

354. Eukaryotic initiation factors 4A, 4B and 4F bind to

- (A) 40 S ribosomal subunit
- (B) 60 S ribosomal subunit
- (C) mRNA
- (D) Amino acyl tRNA

355. The codon which serves as translation start signal is

- (A) AUG
- (B) UAG
- (C) UGA
- (D) UAA

356. The first amino acyl tRNA approaches 40 S ribosomal subunit in association with

- (A) eIF-1A and GTP
 - (B) eIF-2 and GTP
- (C) eIF-2C and GTP (D) eIF-3 and GTP

357. eIF-1A and eIF-3 are required

- (A) For binding of amino acyl tRNA to 40 S ribosomal subunit
- (B) For binding of mRNA to 40 S ribosomal
- (C) For binding of 60 S subunit to 40 S subunit
- (D) To prevent binding of 60 S subunit to 40 S subunit

358. eIF-4 A possesses

- (A) ATPase activity (B) GTPase activity
- Helicase activity (D) None of these

359. eIF-4 B

- (A) Binds to 3' chain initiation codon on mRNA
- (B) Binds to 3' end of mRNA
- (C) Binds to 5' end of mRNA
- (D) Unwinds mRNA near its 5' end

360. Peptidyl transferase activity is present in

- (A) 40 S ribosomal subunit
- (B) 60 S ribosomal subunit
- (C) eEF-2
- (D) Amino acyl tRNA

361. After formation of a peptide bond, mRNA is translocated along the ribosome by

- (A) eEF-1 and GTP
- (B) eEF-2 and GTP
- (C) Peptidyl transferase and GTP
- (D) Peptidyl transferase and ATP

362. Binding of formylmehtionyl tRNA to 30 S ribosomal subunit of prokaryotes is inhibited by

- (A) Streptomycin
- (B) Chloramphenicol
- Erythromycin
- (D) Mitomycin

363. Tetracyclines inhibit binding of amino acyl tRNAs to

- (A) 30 S ribosomal subunits
- (B) 40 S ribosomal subunits
- (C) 50 S ribosomal subunits
- (D) 60 S ribosomal subunits

364. Peptidyl transferase activity of 50 S ribosomal subunits is inhibited by

- (A) Rifampicin
- (B) Cycloheximide
- (C) Chloramphenicol (D) Erythromycin

365. Erythromycin binds to 50 S ribosomal sub unit and

- (A) Inhibits binding of amino acyl tRNA
- (B) Inhibits Peptidyl transferase activity
- Inhibits translocation
- (D) Causes premature chain termination

366. Puromycin causes premature chain termination in

- (A) Prokaryotes
- (B) Eukaryotes
- Both (A) and (B)
- (D) None of these

367. Diphtheria toxin inhibits

- (A) Prokaryotic EF-1
- (B) Prokaryotic EF-2
- (C) Eukaryotic EF-1
- (D) Eukaryotic EF-2

368. The proteins destined to be transported out of the cell have all the following features except

- (A) They possess a signal sequence
- Ribosomes synthesizing them are bound to endoplasmic reticulum
- After synthesis, they are delivered into Golgi apparatus
- (D) They are tagged with ubiquitin

369. SRP receptors involved in protein export are present on

- (A) Ribosomes
- Endoplasmic reticulum
- (C) Golgi appartus
- Cell membrane

370. The signal sequence of proteins is cleaved off

- (A) On the ribosomes immediately after synthesis
- In the endoplasmic reticulum
- During processing in Golgi apparatus
- During passage through the cell membrane

371. The half-life of a protein depends upon its

- (A) Signal sequence
- (B) N-terminus amino acid
- (C) C-terminus amino acid
- (D) Prosthetic group

372. Besides structural genes that encode proteins, DNA contains some regulatory sequences which are known as

- (A) Operons
- (B) Cistrons
- (C) Cis-acting elements (D) Trans-acting factors

373. Inducers and repressors are

- (A) Enhancer and silencer elements respectively
- (B) Trans-acting factors

- (C) Cis-acting elements
- (D) Regulatory proteins

374. cis-acting elements include

- (A) Steroid hormones (B) Calcitriol
 - (B) Calcitriol
 (D) Silencers

(C) Histones 375. Silencer elements

- (A) Are trans-acting factors
- (B) Are present between promoters and the structural genes
- (C) Decrease the expression of some structural genes
- (D) Encode specific repressor proteins

376. trans-acting factors include

- (A) Promoters
- (B) Repressors
- (C) Enhancers
- (D) Silencers

377. Enhancer elements have all the following features except

- (A) They increase gene expression through a promoter
- (B) Each enhancer activates a specific promoter
- (C) They may be located far away from the promoter
- (D) They may be upstream or downstream from the promoter

378. Amplification of dihydrofolate reductase gene may be brought about by

- (A) High concentrations of folic acid
- (B) Deficiency of folic acid
- (C) Low concentration of thymidylate
- (D) Amethopterin

379. Proteins which interact with DNA and affect the rate of transcription possess the following structural motif:

- (A) Helix-turn-helix motif
- (B) Zinc finger motif
- (C) Leucine zipper motif
- (D) All of these

380. Lac operon is a cluster of genes present in

- (A) Human beings
- (B) E. coli
- (C) Lambda phage
- (D) All of these

381. Lac operon is a cluster of

- (A) Three structural genes
- (B) Three structural genes and their promoter
- (C) A regulatory gene, an operator and a promoter
- (D) A regulatory gene, an operator, a promoter and three structural genes

382. The regulatory i gene of lac operon

- (A) Is inhibited by lacotse
- (B) Is inhibited by its own product, the repressor protein
- (C) Forms a regulatory protein which increases the expression of downstream structural genes
- (D) Is constitutively expressed

383. RNA polymerase holoenzyme binds to lac operon at the following site:

- (A) i gene
- (B) z gene
- (C) Operator locus
- (D) Promoter region

384. Trancription of z, y and a genes of lac operon is prevented by

- (A) Lactose
- (B) Allo-lactose
- (C) Repressor
- (D) cAMP

385. Transcription of structural genes of lac operon is prevented by binding of the repressor tetramer to

- (A) i gene
- (B) Operator locus
- (C) Promoter
- (D) z gene

386. The enzymes encoded by z, y and a genes of lac operon are inducible, and their inducer is

- (A) Lactose
- (B) Allo-lactose
- (C) Catabolite gene activator protein
- (D) All of these

387. Binding of RNA polymerase holoenzyme to the promoter region of lac operon is facilitated by

- (A) Catabolite gene activator protein (CAP)
- (B) cAMP
- (C) CAP-cAMP complex
- (D) None of these

(260) MCQs IN BIOCHEMISTRY

388. Lactose or its analogues act as positive regulators of lac operon by

- (A) Attaching to i gene and preventing its expression
- (B) Increasing the synthesis of catabolite gene activator protein
- Attaching to promoter region and facilitating the binding of RNA polymerase holoenzyme
- Binding to repressor subunits so that the repressor cannot attach to the operator locus

389. Expression of structural genes of lac operon is affected by all the following except

- (A) Lactose or its analogues
- (B) Repressor tetramer
- (C) cAMP
- (D) CAP-cAMP complex

390. The coding sequences in lac operon include

- (A) i gene
- (B) i gene, operator locus and promoter
- (C) z, y and a genes
- (D) i, z, y and a genes

391. Mutations can be caused by

- (A) Ultraviolet radiation
- (B) Ionising radiation
- (C) Alkylating agents
- (D) All of these

392. Mutations can be caused by

- (A) Nitrosamine
- (B) Dimethyl sulphate
- (C) Acridine
- (D) All of these

393. Nitrosamine can deaminate

- (A) Cytosine to form uracil
- (B) Adenine to form xanthine
- (C) Guanine to form hypoxanthine
- (D) All of these

394. Exposure of DNA to ultraviolet radiation can lead to the formation of

- (A) Adenine dimers
- (B) Guanine dimers
- (C) Thymine dimers (D) Uracil dimers

395. Damage to DNA caused by ultraviolet radiation can be repaired by

(A) uvr ABC excinuclease

- (B) DNA polymerase I
- DNA ligase
- (D) All of these

396. Xeroderma pigmentosum results from a defect in

- (A) uvr ABC excinuclease
- (B) DNA polymerase I
- (C) DNA ligase
- (D) All of these

397. All the following statements about xeroderma pigmentosum are true except

- (A) It is a genetic disease
- (B) Its inheritance is autosomal dominant
- (C) uvr ABC excinuclease is defective in this disease
- (D) It results in multiple skin cancers

398. Substitution of an adenine base by quanine in DNA is known as

- (A) Transposition
- (B) Transition
- (C) Transversion
- (D) Frameshift mutation

399. Substitution of a thymine base by adenine in DNA is known as

- ((A) Transposition
- (B) Transition
- (C) Transversion
- (D) Frameshift mutation

400. A point mutation results from

- (A) Substitution of a base
- (B) Insertion of a base
- (C) Deletion of a base
- (D) All of these

401. Substitution of a base can result in a

- (A) Silent mutation
- (B) Mis-sense mutation
- Nonsense mutation (D) All of these

402. A silent mutation is most likely to result from

- (A) Substitution of the first base of a codon
- (B) Substitution of the third base of a codon
- (C) Conversion of a nonsense codon into a sense codon
- (D) Conversion of a sense codon into a nonsense codon

403. The effect of a mis-sense mutation can be

- (A) Acceptable
- (B) Partially acceptable
- (C) Unacceptable
- (D) All of these

404. Amino acid sequence of the encoded protein is not changed in

- (A) Silent mutation
- (B) Acceptable mis-sense mutation
- Both (A) and (B)
- (D) None of these

405. Haemoglobin S is an example of a/an

- (A) Silent mutation
- (B) Acceptable mis-sense mutation
- (C) Unacceptable mis-sense mutation
- (D) Partially acceptable mis-sense mutation

406. If the codon UAC on mRNA changes into UAG as a result of a base substitution in DNA, it will result in

- (A) Silent mutation
- (B) Acceptable mis-sense mutation
- (C) Nonsense mutation
- (D) Frameshift mutation

407. Insertion of a base in a gene can cause

- (A) Change in reading frame
- (B) Garbled amino acid sequence in the encoded protein
- Premature termination of translation
- (D) All of these

408. A frameshift mutation changes the reading frame because the genetic code

- (A) Is degenerate
- (B) Is overlapping
- (C) Has no punctuations
- (D) Is universal

409. Suppressor mutations occur in

- (A) Structural genes (B) Promoter regions
- (C) Silencer elements (D) Anticodons of tRNA

410. Suppressor tRNAs can neutralize the effects of mutations in

- (A) Structural genes (B) Promoter regions
- (C) Enhancer elements (D) All of these

411. Mutations in promoter regions of genes can cause

(A) Premature termination of translation

- Change in reading frame of downstream structural gene
- Decreased efficiency of transcription
- (D) All of these

412. Mitochondrial protein synthesis is inhibited

- (A) Cycloheximide
- (B) Chloramphenicol
- Diptheria toxin
- (D) None of these

413. All of the following statements about puromycin are true except

- (A) It is an alanyl tRNA analogue
- It causes premature termination of protein synthesis
- (C) It inhibits protein synthesis in prokaryotes
- (D) It inhibits protein synthesis in eukaryotes

414. Leucine zipper motif is seen in some helical proteins when leucine residues appear at every

- (A) 3rd position
- (B) 5th position
- (C) 7th position
- (D) 9th position

415. Zinc finger motif is formed in some proteins by binding of zinc to

- (A) Two cysteine residues
- (B) Two histidine residues
- (C) Two arginine residues
- (D) Two cysteine and two histidine residues or two pairs of two cysteine residues each

416. Restriction endonucleases are present in

- (A) Viruses
- (B) Bacteria
- (C) Eukaryotes
- (D) All of these

417. Restriction endonucleases split

- (A) RNA
- (B) Single stranded DNA
- (C) Double stranded DNA
- (D) DNA-RNA hybrids

418. Restriction endonucleases can recognise

- (A) Palindromic sequences
- (B) Chimeric DNA
- (C) DNA-RNA hybrids
- (D) Homopolymer sequences

419. All of the following statements about restriction endonucleases are true except:

- (A) They are present in bacteria
- (B) They act on double stranded DNA
- (C) They recognize palindromic sequences
- (D) They always produce sticky ends

420. Which of the following is a palindromic sequence

- (A) 5' ATGCAG 3'
- 3' TACGTC 5'
- (C) 5' CGAAGC 3'
- (D) 3' GCTTCG 5'

421. In sticky ends produced by restriction endonucleases

- (A) The 2 strands of DNA are joined to each other
- (B) The DNA strands stick to the restriction endonuclease
- (C) The ends of a double stranded fragment are overlapping
- (D) The ends of a double stranded fragment are non overlapping

422. All of the following may be used as expression vectors except

- (A) Plasmid
- (B) Bacteriophage
- (C) Baculovirus (D) E. coli

423. A plasmid is a

- (A) Single stranded linear DNA
- (B) Single stranded circular DNA
- (C) Double stranded linear DNA
- (D) Double stranded circular DNA

424. Fragments of DNA can be identified by the technique of

- (A) Western blotting (B) Eastern blotting
- (C) Northern blotting (D) Southern blotting

425. A particular RNA in a mixture can be identified by

- (A) Western blotting (B) Eastern blotting
- (C) Northern blotting (D) Southern blotting

426. A radioactive isotope labeled cDNA probe is used in

- (A) Southern blotting (B) Northern blotting
- (C) Both (A) and (B) (D) None of these

427. An antibody probe is used in

- (A) Southern blotting (B) Northern blotting
- (C) Western blotting (D) None of these

428. A particular protein in a mixture can be detected by

- A) Southern blotting (B) Northern blotting
- Western blotting (D) None of these

429. The first protein synthesized by recombinant DNA technology was

- (A) Streptokinase
- Human growth hormone
- Tissue plasminogen activator
- (D) Human insulin

430. For production of eukaryotic protein by recombinant DNA technology in bacteria, the template used is

- (A) Eukaryotic gene
- (B) hnRNA
- (C) mRNA
- (D) All of these

431. Monoclonal antibodies are prepared by cloning

- (A) Myeloma cells
- (B) Hybridoma cells
- T-Lymphocytes
- (D) B-Lymphocytes

432. Myeloma cells are lacking in

- (A) TMP synthetase
- (B) Formyl transferase
- (C) HGPRT
- (D) All of these

433. Hybridoma cells are selected by culturing them in a medium containing

- (A) Adenine, guanine, cytosine and thymine
- Adenine, guanine, cytosine and uracil
- (C) Hypoxanthine, aminopterin and thymine
- (D) Hypoxanthine, aminopterin and thymidine

434. Myeloma cells and lymphocytes can be fused by using

- (A) Calcium chloride (B) Ethidium bromide
- (C) Polyethylene glycol (D) DNA polymerase

435. Trials for gene therapy in human beings were first carried out, with considerable success, in a genetic disease called

- (A) Cystic fibrosis
- (B) Thalassemia
- (C) Adenosine deaminase deficiency
- (D) Lesch-Nyhan syndrome

436. Chimeric DNA

- (A) Is found in bacteriophages
- (B) Contains unrelated genes
- (C) Has no restriction sites
- (D) Is palindromic

437. Which of the following may be used as a cloning vector?

- (A) Prokaryotic plasmid (B) Lambda phage
- (C) Cosmid
- (D) All of these

438. The plasmid pBR322 has

- (A) Ampicillin resistance gene
- (B) Tetracycline resistance gene
- (C) Both (A) and (B)
- (D) None of these

439. Lambda phage can be used to clone DNA fragments of the size

- (A) Upto 3 kilobases (B) Upto 20 kilobases
- (C) Upto 45 kilobases (D) Upto 1,000 kilobases

440. DNA fragments upto 45 kilobases in size can be cloned in

- (A) Bacterial plasmids
- (B) Lambda phage
- (C) Cosmids
- (D) Yeast artificial chromosomes

441. A cosmid is a

- (A) Large bacterial plasmid
- (B) Viral plasmid
- (C) Hybrid of plasmid and phage
- (D) Yeast plasmid

442. Polymerase chain reaction can rapidly amplify DNA sequences of the size

- (A) Upto 10 kilobases (B) Upto 45 kilobases
- (C) Upto 100 kilobases(D) Upto 1,000 kilobases

443. The DNA polymerase commonly used in polymerase chain reaction is obtained from

- (A) E. coli
- (B) Yeast
- (C) T.aquaticus
- (D) Eukaryotes

444. Base sequence of DNA can be determined by

- (A) Maxam-Gilbert method
- (B) Sanger's dideoxy method
- (C) Both (A) and (B)
- (D) None of these

445. From a DNA-RNA hybrid, DNA can be obtained by addition of

- (A) DNA B protein and ATP
- (B) Helicase and ATP
- (C) DNA topoisomerase I
- (D) Alkali

446. Optimum temperature of DNA polymerase of *T. aquaticus* is

- (A) 30°C
- (B) 37°C
- (C) 54°C
- (D) 72°C

447. In addition to Taq polymerase, polymerase chain reaction requires all of the following except

- (A) A template DNA
- (B) Deoxyribonucleoside triphosphates
- (C) Primers
- (D) Primase

448. DNA polymerase of T. aquaticus is preferred to that of *E. coli* in PCR because

- (A) It replicates DNA more efficiently
- (B) It doesn't require primers
- (C) It is not denatured at the melting temperature of DNA
- (D) It doesn't cause errors in replication

449. Twenty cycles of PCR can amplify DNA:

- (A) 2²⁰ fold
- (B) 20² fold
- (C) 20 x 2 fold
- (D) 20 fold

450. Transgenic animals may be prepared by introducing a foreign gene into

- (A) Somatic cells of young animals
- (B) Testes and ovaries of animals
- (C) A viral vector and infecting the animals with the viral vector
- (D) Fertilised egg and implanting the egg into a foster mother

451.	Yeast artificial chromosome can be used to amplify DNA sequences of the size		(A) Cysteine (B) Aspartate (C) Glutamate (D) All of these
	(A) Upto 10 kb (B) Upto 45 kb	459.	N-Formiminoglutamate is a metabolite of
452.	(C) Upto 100 kb (D) Upto 1,000 kb DNA finger printing is based on the		(A) Glutamate (B) Histidine (C) Tryptophan (D) Methionine
	presence in DNA of	460.	Methylmalonyl CoA is a metabolite of
	(A) Constant number of tandem repeats(B) Varibale number of tandem repeats(C) Non-repititive sequences in each DNA		(A) Valine (B) Leucine (C) Isoleucine (D) All of these
	(D) Introns in eukaryotic DNA	461.	Homogentisic acid is formed from
453.	All the following statements about restriction fragment length polymor-		(A) Homoserine (B) Homocysteine (C) Tyrosine (D) Tryptophan
	phism are true except	462.	Maple syrup urine disease results from
	 (A) It results from mutations in restriction sites (B) Mutations in restriction sites can occur in coding or non-coding regions of DNA (C) It is inherited in Mendelian fashion (D) It can be used to diagnose any genetic disease 	442	absence or serve deficiency of (A) Homogentisate oxidase (B) Phenylalanine hydroxylase (C) Branched chain amino acid transaminase (D) None of these
454.	Inborn errors of urea cycle can cause all the following except	403.	Which of the following is present as a marker in lysosomal enzymes to direct them to their destination?
	(A) Vomiting (B) Ataxia (C) Renal failure (D) Mental retardation		(A) Glucose-6-phosphate(B) Mannose-6-phosphate(C) Galactose-6-phosphate
455.	Hyperammonaemia type I results from congenital absence of		(D) N-Acetyl neuraminic acid
	(A) Glutamate dehydrogenase(B) Carbamoyl phosphate synthetase(C) Ornithine transcarbamoylase(D) None of these	464.	Marfan's syndrome results from a mutation in the gene coding: (A) Collagen (B) Elastin (C) Fibrillin (D) Keratin
456.	Congenital deficiency of ornithine transcarbamoylase causes	465.	All the following statements about fibronectin are true except
	 (A) Hyperammonaemia type I (B) Hyperammonaemia type II (C) Hyperornithinaemia (D) Citrullinaemia 		 (A) It is glycoprotein (B) It is a triple helix (C) It is present in extra cellular matrix (D) It binds with integrin receptors of cell
457.	A ketogenic amino acid among the following is	466.	Fibronectin has binding sites for all of the following except
	(A) Leucine (B) Serine (C) Threonine (D) Proline		(A) Glycophorin (B) Collagen (C) Heparin (D) Integrin receptor
458.	Carbon skeleton of the following amino	467.	
	acid can serve as a substance for gluconeogenesis	-14/1	(A) Cell adhension (B) Cell movement (C) Both (A) and (B) (D) None of these

468. Glycoproteins are marked for destruction by removal of their

- (A) Oligosaccharide prosthetic group
- (B) Sialic acid residues
- (C) Mannose residues
- (D) N-terminal amino acids

469. Glycophorin is present in cell membranes of

- (A) Erythrocytes
- (B) Platelets
- (C) Neutrophils
- (D) Liver

470. Selectins are proteins that can recognise specific

- (A) Carbohydrates
- (B) Lipids
- (C) Amino acids
- (D) Nucleotides

471. Hunter's syndrome results from absence of

- (A) Hexosaminidase A
- (B) Iduronate sulphatase
- (C) Neuraminidase
- (D) Arylsulphatase B

472. A cancer cell is characterized by

- (A) Uncontrolled cell division
- (B) Invasion of neighbouring cells
- (C) Spread to distant sites
- (D) All of these

473. If DNA of a cancer cell is introduced into a normal cell, the recipient cell

- (A) Destroys the DNA
- (B) Loses its ability to divide
- (C) Dies
- (D) Changes into a cancer cell

474. A normal cell can be transformed into a cancer cell by all of the following except

- (A) Ionising radiation
- (B) Mutagenic chemicals
- (C) Oncogenic bacteria
- (D) Some viruses

475. Proto-oncogens are present in

- (A) Oncoviruses
- (B) Cancer cells
- (C) Healthy human cells
- (D) Prokaryotes

476. All the following statements about protooncogenes are true except

- (A) They are present in human beings
- (B) They are present in healthy cells
- (C) Proteins encoded by them are essential
- (D) They are expressed only when a healthy cell has been transformed into a cancer cell

477. Various oncogens may encode all of the following except:

- (A) Carcinogens
- (B) Growth factors
- (C) Receptors for growth factors
- (D) Signal transducers for growth factors

478. Ras proto-oncogene is converted into oncogene by

- (A) A point mutation
- (B) Chromosomal translocation
- (C) Insertion of a viral promoter upstream of the gene
- (D) Gene amplification

479. Ras proto-oncogene encodes

- (A) Epidermal growth factor (EGF)
- (B) Receptor for EGF
- (C) Signal transducer for EGF
- (D) Nuclear transcription factor

480. P 53 gene:

- (A) A proto-oncogene
- (B) An oncogene
- (C) A tumour suppressor gene
- (D) None of these

481. Retinoblastoma can result from a mutation in

- (A) ras proto-oncogene
- (B) erbB proto-oncogene
- (C) p 53 gene
- (D) RB 1 gene

482 All the following statements about retino blastoma are true except

- (A) At least two mutations are required for its development
- (B) One mutation can be inherited from a parent

(266) MCQs IN BIOCHEMISTRY

- (C) Children who have inherited one mutation develop retinoblastoma at a younger age
- (D) RB 1 gene promotes the development of retinoblastoma

483. Ames assay is a rapid method for detection of

- (A) Oncoviruses
- (B) Retroviuses
- (C) Chemical carcinogens
- (D) Typhoid

484. Amplification of dihydrofolate reductase gene in a cancer cell makes the cell

- (A) Susceptible to folic acid deficiency
- (B) Less malignant
- (C) Resistant to amethopterin therapy
- (D) Responsive to amethopterin therapy

485. Conversion of a procarcinogen into a carcinogen often requires

- (A) Proteolysis
- (B) Microsomal hydroxylation
- (C) Exposure to ultraviolet radiation
- (D) Exposure to X-rays

486. The only correct statement about oncoviruses is

- (A) All the oncoviruses are RNA viruses
- (B) Reverse transcriptase is present in all oncoviruses
- (C) Viral oncogenes are identical to human protooncogens
- (D) Both DNA and RNA viruses can be oncoviruses

487. RB 1 gene is

- (A) A tumour suppressor gene
- (B) Oncogene
- (C) Proto-oncogene
- (D) Activated proto-oncogene

488. Cancer cells may become resistant to amethopterin by

(A) Developing mechanisms to destroy amethopterin

- (B) Amplification of dihydrofolate reducatse gene
- (C) Mutation in the dihydrofolate reductase gene so that the enzyme is no longer inhibited by amethopterin
- (D) Developing alternate pathway of thymidylate synthesis

489. The major source of NH₃ produced by the kidney is

- (A) Leucine
- (B) Glycine
- (C) Alanine
- (D) Glutamine

490. Which of these methyl donors is not a quanternary ammonium compound?

- (A) Methionine
- (B) Choline
- (C) Betain
- (D) Betainaldehyde

491. L-glutamic acid is subjected to oxidative deaminition by

- (A) L-amino acid dehydrogenase
- (B) L-glutamate dehydrogenase
- (C) Glutaminase
- (D) Glutamine synthetase

492. A prokaryotic ribosome is made up of _____ sub units.

- (A) 20 S and 50 S
- (B) 30S and 50S
- (C) 30S and 60S
- (D) 20S and 50S

493. AN Eukaryotic ribosome is made up of _____ sub unit.

- (A) 40S and 60S
- (B) 40S and 50S
- (C) 40S and 80S
- (D) 60S and 80S

494. GTP is not required for

- (A) Capping L of mRNA
- (B) Fusion of 40S and 60S of ribosome
- (C) Accommodation of tRNA amino acid
- (D) Formation of tRNA amino acid complex

495. The antibiotic which inhibits DNA dependent RNA polymerase is

- (A) Mitomycin C
- (B) Actinomycin d
- C) Streptomycin
- (D) Puromycin

496. The antibiotic which cleaves DNA is

- (A) Actinomycin d
- (B) Streptomycin
- (C) Puromycin
- (D) Mitomycin C

497.		ch has a structure similar end of tRNA tyrosine is	506.	 Progressive transmethylation of ethano- lamine gives
	(A) Actinomycin d (C) Puromycin	(B) Streptomycin(D) Mitomycin c		(A) Creatinine (B) Choline
498.	ATP is required for	r		(C) Methionine
	(A) Fusion of 40S a (B) Accommodation ribosome	nd 60S of ribosome n tRNA amino acid in a site of	507.	(D) N-methyl nicotinamide Genetic information originates from
	(C) Movement of ril	oosome along mRNA NA amino acid complex		(A) Cistron of DNA(B) Codons of mRNA(C) Anticodons of tRNA
499.	What is the subc	ellular site for the bio- eins?	500	(D) Histones of nucleoproteins
	(A) Chromosomes (C) Ribosomes	(B) Lymosomes (D) Centrosomes	308.	 The genetic code operates through (A) The protein moiety of DNA (B) Cistrom of DNA
500.	when	gative nitrogen balance		(C) Nucleotide sequence of m RNA(D) The anticodons of tRNA
	(A) Intake exceeds(B) New tissue is be(C) Output exceeds	eing synthesized	509.	 DNA synthesis in laboratory was first achieved by
	(D) Intake is equal	to output		(A) Watson and crick (B) Khorana (C) A.Kornberg (D) Ochoa
501.		rfused through a dog's ormed, while is ds liver.	510.	 Among the different types of RNA, which one has the highest M.W.?
	(C) Uric acid, creat	(B) Urea, allantoin		(A) mRNA (B) rRNA (C) yeast RNA (D) tRNA
502.	(D) Uric acid, Urea Aspartate amina	transferase uses the	511.	 From DNA the genetic message is trans- cribed into this compound:
	following for train (A) Glutamic acid of	nsamination:		(A) Protein (B) mRNA (C) tRNA (D) rRNA
	(B) Glutamic acid a(C) Aspartic acid a(D) aspartic acid a	nd pyruvic acid	512.	. This compound has a double helical structure.
503.	•	e following compounds		(A) Deoxyribonucleic acid (B) RNA
	(A) Insulin (C) Mucin	(B) Hheparin (D) Pepsin		(C) Flavine-adevine dinucleotide(D) Nicotinamide adamine dinucleotide
504.		a is formed in this tissue:	513.	 The structural stability of the double helix of DNA is as cribbed largely to
	(A) Kidney (C) Uterus	(B) Urethra (D) Liver		(A) Hydrogen bonding between adjacent purine bases
505.	individual riboso			(B) Hydrophobic bonding between staked purine and pyrinuidine nuclei (B) Hydrophobic bonding between staked purine
	(A) 20 (C) 5	(B) 10 (D) 2		1,

(268) MCQs IN BIOCHEMISTRY

- Hydrogen bonding between adjacent pyrimidine bases
- (E) Hydrogen bonding between purine and pyrimidine bases

514. Which of the following statements about nucleic acid is most correct?

- Both pentose nucleic acid and deoxypentose nucleic acid contain the same pyrimidines
- (B) Both pentose nucleic acid and deoxypentose nucleic acid and deoxypentose nucleic acid Contain the same purines
- (C) RNA contains cytosine and thymine
- (D) DNA and RNA are hydrolysed by weak alkali

515. Acid hydrolysis of ribonucleic acid would yield the following major products:

- (A) d-deoxyribose, cytosine, adenine
- (B) d-ribose, thymine, Guanine
- (C) d-ribose, cytosine, uracil, thymine
- (D) d-ribose, uracil, adenine, guanine, cytosine

516. RNA does not contain

- (A) adenine
- (B) OH methyl cytosine
- (C) d-ribose
- (D) Uracil

517. Which of the following statements is correct?

- (A) a nucleo protein usually contain deoxy sugars of the hexose type
- (B) Nucleoproteins are usually absent from the cytoplasm
- (C) Nucleoproteins usually are present in the nucleus only
- (D) Nucleoproteins usually occur in the nucleus and cytoplasm

518. Which of the following compound is present in RNA but absent from DNA?

- (A) Thymine
- (B) Cytosine
- (C) Uracil
- (D) Guanine

519. Nucleic acids can be detected by means of their absorption maxima near 260 nm. Their absorption in this range is due to

- (A) Proteins
- (B) Purines and pyrimidines
- (C) Ribose
- (D) Deoxyribose

520. Which of the following contains a deoxy sugar?

- (A) RNA
- (B) DNA
- (C) ATP
- (D) UTP

521. DNA is

- (A) Usually present in tissues as a nucleo protein and cannot be separated from its protein component
- (B) A long chain polymer in which the internucleotide linkages are of the diester type between C-3' and C-5'
- (C) Different from RNA since in the latter the internucleotide linkages are between C-2' and C-5'
- (D) Hydrolyzed by weal alkali (pH₉ to 100°C)

522. Nobody is the name given to

- (A) Ribosome
- (B) Microsome
- (C) Centrosome
- (D) Nucleosome

523. Transcription is the formation of

- (A) DNA from a parent DNA
- (B) mRNA from a parent mRNA
- (C) pre mRNA from DNA
- (D) protein through mRNA

524. Translation is the formation of

- (A) DNA from DNA
- (B) mRNA from DNA
- (C) Protein through mRNA
- (D) mRNA from pre mRNA

525. Sigma and Rho factors are required for

- (A) Replication
- (B) Transcription
- (C) Translation
- (D) Polymerisation

526. The genine of φ×174 bacteriophage is interesting in that if contains

- (A) No DNA
- (B) DNA with uracil
- (C) Single stranded DNA
- (D) Triple standard DNA

527. Okasaki fragments are small bits of

- (A) RNA
- (B) DNA
- (C) DNA with RNA heads
- (D) RNA with DNA heads

528.	In addition to the DNA of nucleus there	Q536.	5. RNA synthesis requires			
	DNA is (A) Mitochondrian (B) Endoplasmic reticulum (C) Golgi apparatus	537.	(C)	-	(D)	RNA template DNA primer otein synthesis has
	(D) Plasma membrane			cap.		
529.	The mitochondrial DNA is			ATP		CTP
	(A) Like the nuclear DNA in structure(B) Single stranded, linear(C) Double stranded, circular	538.	mR	GTP NA ready for pr y toil.		UTP n synthesis has the
	(D) Single stranded, circular		(A)		(B)	A
530.	A synthetic RNA having the sequence of		(C)		(D)	
	UUUUUU (Poly U) will give a protein	539.	The	codon for phei	ıyl A	Alanine is
	having poly (A) Alamine (B) Phenyl alanine			AAA		CCC
	(C) Glycine (D) Methionine		(C)	GGG	(D)	UUU
531.	Lac operon of E. coli contains is continuity.	540.	Blue in	e print for genet	ic in	formation residues
	(A) Regulator and operator genes only		(A)	mRNA	(B)	tRNA
	(B) Operator and structural genes only		(C)	rRNA	(D)	DNA
	(C) Regular and structural genes only(D) Regulator, operator and structural genes	541.	Ger	nes are		
532.	A mRNA of eukaryotes can code for		(A)	RNA	(B)	DNA
302.	(A) Only one polypeptide		(C)	lipoproteins and	(D)	Chromoproteins
	(B) Two polypeptides	542.	Coc	lons are in		
	(C) Three polypeptides		(A)	DNA	(B)	mRNA
	(D) Five polypeptides		(C)	tRNA	(D)	rRNA
533.	mRNA of prokaryotes can code for	543.	The genetic code operates via			
	(A) More than one polypeptide		(A)	The protein moiet	y of [NA
	(B) Only one polypeptide			The base sequen		
	(C) Many exons and introns(D) Introns only			The nucleotide se		
534.	DNA directed RNA polymerase is		(D)	The base sequen	ce of	tRNA
JJ4.	(A) Replicase	544.		ne bases with urring in plants		thyl substituents
	(B) Transcriptase (C) Reverse transcriptase		(A)	Caffeine	(B)	Theophylline
	(D) Polymerase III		(C)	Theobromine	(D)	All of these
535.	RNA directed DNA polymerase is	545.			n in	human beings is
	(A) Replicase			red in	יטי	DNIA
	(B) Transcriptase		(A) (C)	DNA Both (A) and (B)		RNA None of these
	(C) Reversetranscriptase(D) Polymerase–III		(0)	Doin (A) and (B)	(1)	1 AOUE OF HIESE

546.	All following are nucleotides except	naturally occurring			Deoxyribose Adenine		Uracil Thymine
	(A) Cyclic AMP		555.	Wh	ich of the followi	ng a	re nucleo proteins?
<i>- 47</i>	(B) ATP (C) DNA (D) Inosine monophos			(B) (C)	Protamines Histones Deoxy and Ribo n	ucle	o proteins
547.	group of the amino	p and a carboxylic acid are attached to n, the amino acid is	556.		All of these total RNA in ce 1–10%		NA constitutes
	(A) Alpha	(B) Beta		, ,	30–50%		50-80%
	(C) Gamma	(D) Epsilon	557.	Uni	t of genetic info	rma	ıtion:
548.	8000 nucleotides it	there are more than is most likely		, ,	DNA Cistron		RNA None of these
	(A) RNA	(B) DNA	558.	Ant	ricodon sequenc	e ar	e seen in
	(C) Both (A) and (B)	•		(A)	tRNA and transcri	bed	DNA strand
549.	stored in	n in human beings is (B) DNA		(C)	tRNA and comple mRNA		•
	(A) RNA (C) Both (A) and (B)	, ,			mRNA and compl		ntary DINA strana
550.	In RNA, apart from a all following are pro (A) Adenine (C) Thymine	ribose and phosphate, esent except (B) Guanine (D) Cytosine	337.		AD is destroyed Adenylate cyclase Phosphodiesterase Synthetase phosp Synthetase kinase	; e	se
551.		ving gives a positive	560.	Res	triction enzyme	s ho	ıve been found in
	Ninhydrin test? (A) Reducing sugar (C) α-amino acids	(B) Triglycerides (D) Phospholipids	F/1	(C)	Humans Bacteria	(D)	Birds Bacteriophase
552.	A Gene is	()	561.		phur is not pres Thiamine		In Lipic acid
	(A) A single protein m	olecule		(C)	Thymine		Biotin
	(B) A group of chromo	osomes naking a protein molecule	562.	spe	nich one of the ecific nucleotide s RNA polymerase	sequ	
553		ormation is located in			Inducer		Restriction
330.	(A) Purine bases(B) Pyrimidine bases(C) Purine and pyrimid(D) sugar		563.	foli TG((A)	owing sequence GCAGCCT? ACC GTC GGA	es is (B)	
554.		following is not a			AGG CTG CCA		
,	constituent of RNA?		564.		osomes similar nd in	to	those of bacterial

(A) Plant nucei (A) Ribose 5 phosphate (B) Cardiac muscle cytoplasm (B) Phosphoribosyl pyrophosphate (C) Liver endoplasmic reticulum (C) Hypoxanthine (D) Neuronal cytoplasm (D) Adenosine 565 The mechanism of synthesis of DNA and 572. Carbon 6-of purine skeleton comes from RNA are similar in all the following ways (A) Atmospheric CO₂ except 1 carbon carried by folate (A) They involve release of pyrophosphate from (C) Betoine each nucleotide added (D) Methionine (B) They require activated nucleotide precursor 573. Uric acid is the catabolic end product of and Mg²⁺ (C) The direction of synthesis is $5' \rightarrow 3'$ (A) Porphyrine (B) Purines (D) They require a primer (C) Pyrimidines (D) Pyridoxine 566. Template-directed DNA synthesis occurs in 574. Diphenylamine method is employed in the all the following except quantitation of (A) The replication fork (A) Nucleic acid (B) RNA (B) Polymerase chain reaction (C) DNA (D) Proteins (C) Growth of RNA tumor viruses 575. Orcinol method is employed in the quanti-(D) Expression of oneogenes tation of 567. Which one of the following statements (A) Nucleic acid (B) DNA correctly describes eukaryotic DNA? RNA (D) Proteins (A) They involve release of pyrophosphate from 576. Nucleic acid show strong absorption at each nucleotide precussor and Mg²⁺ one of the wavelength: The direction of synthesis is (A) 280 nm (B) 220 nm (C) They require a primer $5' \rightarrow 3'$ (C) 360 nm (D) 260 nm (D) None of these 577. tRNA has 568. Which one of the following causes frame (A) Clover leaf structure shift mutation? (B) anticodon arm (A) Transition (C) poly 'A' tay 3' (B) Transversion Cap at 5' end (C) Deletion 578. Which one of the following contributes (D) Substitution of purine to pyrimidine nitrogen atoms to both purine and 569. Catabolism of thymidylate gives pyrimidine rings? (A) α-alanine (A) Aspartate (B) β -alanine Carbanoyl phosphate (C) α-aminoisobutyrate Carbondioxide (D) β-aminoisobutyrate **Tetrahydrofolate** 570. Glycine gives _____ atoms of purine. The four nitrogen atoms of purines are derived from (B) C_4 , C_5 and N_7 (C) C_4 , C_5 and N_9 (D) C_4 , C_6 and N_7 (A) Urea and NH₃ (B) NH₃, Glycine and Glutamate 571. A common substrate of HGPRTase, APRTase (C) NH₃, Asparate and Glutamate and PRPP glutamyl amidotransferase is

(D) Aspartate, Glutamine and Glycine

(272) MCQs IN BIOCHEMISTRY

580. A drug which prevents uric acid synthesis by inhibiting the enzyme Xanthine oxidase is

- (A) Aspirin
- (B) Allopurinal
- (C) Colchicine
- (D) Phenyl benzoate

581. Glycine contributes to the following C and N of purine nucleus:

- (A) C_1 , C_2 and N_7 (B) C_8 , C_8 and N_9
- (C) C_4 , C_5 and N_7 (D) C_4 , C_5 and N_9

582. Insoinic acid is the biological precursor of

- (A) Cytosine and Uric acid
- (B) Adenylve acid and Glucine floc acid
- (C) Orotic acid and Uridylic acid
- (D) Adenosine acid Thymidine

583. The probable metabolic defect in gents is

- (A) A defect in excretion of uric acid by kidney
- (B) An overproduction of pyrimidines
- (C) An overproduction of uric acid
- (D) Rise in calcium leading to deposition of calcium

584. In humans, the principal break down product of purines is

- (A) NH₃
- (B) Allantin
- (C) Alanine
- (D) Uric acid

585. A key substance in the committed step of pyrimidines biosynthesis is

- (A) Ribose-5-phosphate
- Carbamoyl phosphate
- ATP (C)
- (D) Glutamine

586. In humans, the principal metabolic product of pyrimidines is

- (A) Uric acid
- (B) Allantoin
- (C) Hypoxanthine
- (D) β-alanine

587. In most mammals, except primates, uric acid is metabolized by

- (A) Oxidation to allantoin
- Reduction to NH₃
- (C) Hydrolysis to allantoin
- (D) Hydrolysis to NH₃

588. Two nitrogen of the pyrimidines ring are obtained from

- (A) Glutamine and Carbamoyl-p
- Asparate and Carbamoyl-p
- Glutamate and NH₃
- Glutamine and NH₃

589. All are true about lesch-nyhan syndrome

- Produces self-mutilation
- Genetic deficiency of the enzyme
- Elevated levels of uric acid in blood
- (D) Inheritance is autosomal recessive

590. Synthesis of GMP and IMP requires the following:

- (A) NH₃ NAD+, ATP
- Glutamine, NAD+, ATP
- NH₃, GTP, NADP+
- Glutamine, GTP, NADP+

591. Which pathway is correct for catabolism of purines to form uric acid?

- (A) Guanylate → Adenylate → Xanthine → hypoxanthine→Uric acid
- Guanylate \rightarrow inosinate \rightarrow Xanthine \rightarrow hypoxanthine→Uric acid
- (C) Adenylate→Inosinate→Xanthine hypoxanthine→Uric acid
- (D) Adenylate \rightarrow Inosinate \rightarrow hypoxanthine Xanthine→Uric acid

592. Polysemes do not contain

- (A) Protein
- (B) DNA
- (C) mRNA
- (D) rRNA

593. The formation of a peptide bond during the elongation step of protein synthesis results in the splitting of how many high energy bonds?

- (A) 1
- (B) 2
- (C) 3
- (D) 4

594. Translocase is an enzyme required in the process of

- (A) DNA replication
- (B) RNA synthesis
- (C) Initiation of protein synthesis
- (D) Elongation of peptides

595. Nonsense codons bring about

(A) Amino acid activation (D) Multiple codons for a single amino acid (B) Initiation of protein synthesis 603. The normal function of restriction endonuc-(C) Termination of protein synthesis leases is to Elongation of polypeptide chains (A) Excise introns from hrRNA 596. Which of the following genes of the E.coli (B) Polymerize nucleotides to form RNA "Lac operon" codes for a constitutive (C) Remove primer from okazaki fragments protein? Protect bacteria from foreign DNA (A) The 'a' gene (B) The 'i' gene 604. In contrast to Eukaryotic mRNA, pro-(C) The 'c' gene (D) The 'z' gene karyotic mRNA is characterized by 597. In the process of transcription, the flow (A) Having 7-methyl guanosine triphosphate at of genetic information is from the 5' end (A) DNA to DNA (B) DNA to protein (B) Being polycystronic (C) RNA to protein (D) DNA to RNA (C) Being only monocystronic 598. The anticodon region is an important part (D) Being synthesized with introns of the structure of 605. DNA ligase of E. coli requires which of the (A) rRNA (B) tRNA following co-factors? (C) mRNA (D) hrRNA (A) FAD (B) NAD+ 599. The region of the Lac operon which must (C) NADP+ (D) NADH be free from structural gene transcription 606. Which of the following is transcribed to occur is during repression? (A) The operator locus Structural gene (B) Promoter gene (B) The promoter site (C) Regulator gene (D) Operator gene (C) The 'a' gene (D) The 'i' gene 607. mRNA is complementary copy of (A) 5'-3' strand of DNA+ 600. Another name for reverse transcriptase is (B) 3'-5' strand of DNA (A) DNA dependent DNA polymerase (C) Antisense strand of DNA (B) DNA dependent RNA polymerase (D) tRNA (C) RNA dependent DNA polymerase 608. Synthesis of RNA molecule is terminated (D) RNA dependent RNA polymerase by a signal which is recognised by 601. In the 'lac operon' concept, which of the (A) α -factor (B) β-factor following is a protein? (C) δ -factor (D) p (A) Operator (B) Repressor 609. The binding of prokaryotic DNA depen-(C) Inducer (D) Vector dent RNA polymerase to promoter sits of genes is inhibited by the antibiotic: 602. Degeneracy of the genetic code denotes the existence of (A) Streptomycin (B) Rifamcin (C) Aueromycin (D) Puromycin (A) Base triplets that do not code for any amino 610. In E. coli the chain initiating amino acid in (B) Codons consisting of only two bases protein synthesis is (C) Codons that include one or more of the (A) N-formyl methionine(B) Methionine unusual bases (C) Serine (D) Cysteine

(274) MCQs IN BIOCHEMISTRY

\sim									
611.		anitin the		m poison inhibits		ups site		t dis	tant from the star
	(B)	ATP synthe	,			(A)	RNA polymerase	(B)	Repressor
	(C)	DNA synth				(C)	Inducer	(D)	Restriction
	(D)	mRNA synt	thesis		618.	Usi	na written conve	entic	on which one of the
612.	How many high-energy phosphate bond equivalents are required for amino acid				following sequences is complimentary to TGGCAGCCT?				
		ivation in				(A)	ACCGTCGGA	(B)	ACCGUCGGA
	(A)	One	(B)	Two		(C)	AGGCTGCCA	(D)	TGGCTCGGA
	(C)	Three	(D)	Four	619.	Rib	osomes similar	to	those of bacteric
613.	Translation results in the formation of				nd in				
	(A)	mRNA	(B)	tRNA		(A)	Plant nuclei		
	(C)	rRNA	(D)	A protein molecule		(B)	Cardiac muscle cy	ytopl	asm

(B) GTP (A) mRNA

the following except

(C) Formyl-Met-tRNA (D) Tu, TS and G factors

615. The 'rho' (ρ) factor is involved

(A) To increase the rate of RNA synthesis

614. Elongation of a peptide chain involves all

- (B) In binding catabolite repressor to the promoter region
- (C) In proper termination of transcription
- (D) To allow proper initiation of transcriptide

616. In the biosynthesis of c-DNA, the joining enzyme ligase requires

(A) GTP (C) CTP (D) UTP

617. Which one of the following binds to specific nucleotide sequences that are

- (C) Liver endoplasmic reticulum
- (D) Neuronal cytoplasm

620. The mechanism of synthesis of DNA and RNA are similar to all the following ways except

- (A) They involve release of pyrophosphate from each nucleotide added
- (B) They require activated nucleotide precursor and Mg²⁺
- The direction of synthesis is
- (D) They require a primer

621. Template-directed DNA synthesis occurs in all the following except

- (A) The replication fork
- Polymerase chain reaction
- Growth of RNA tumor viruses
- (D) Expression of oncogenes

ANSWERS					
1. B	2. B	3. A	4. C	5. A	6. C
7. B	8. D	9. C	10. D	11. A	12. A
13. A	14. D	15. B	16. A	17. C	18. C
19. A	20. A	21. B	22. C	23. C	24. D
25. C	26. A	27. C	28. B	29. C	30. A
31. D	32. A	33. B	34. A	35. A	36. C
37. C	38. A	39. B	40. D	41. C	42. C
43. B	44. C	45. D	46. B	47. A	48. C
49. B	50. A	51. D	52. B	53. B	54. D
55. D	56. A	57. D	58. A	59. A	60. D
61.B	62. C	63. A	64. A	65. A	66. A
67. A	68. A	69. B	70. A	71. A	72. A
73. C	74. B	75. C	76. A	77. C	78. D
<i>7</i> 9. B	80. A	81. C	82. A	83. A	84. A
85. A	86. D	87. A	88. B	89. A	90. C
91.B	92. B	93. A	94. A	95. A	96. A
97. B	98. B	99. D	100. A	101.B	102. A
103. B	104. B	105. A	106. B	107. C	108. A
109. D	110. C	111. D	112. A	113. B	114. A
115. B	116. A	117. D	118. A	119. A	120. C
121. A	122. D	123. B	124. C	125. A	126. A
127. D	128. C	129. A	130. A	131.B	132. B
133. D	134. A	135. A	136. D	137. B	138. B
139. A	140. D	141.B	142. D	143. C	144. B
145. D	146. B	1 <i>47</i> . B	148. B	149. D	150. D
151. D	152. A	153. C	154. A	155. B	156. C
1 <i>57</i> . B	158. A	159. A	160. A	161. C	162. C
163. C	164. C	165. D	166. C	167. A	168. C
169. C	170. D	171.B	172. B	173. C	174. D
175. D	176. A	1 <i>77</i> . B	1 <i>7</i> 8. D	179. D	180. C
181.B	182. B	183. C	184. B	185. A	186. D
187. B	188. C	189. D	190. A	191.B	192. C
193. A	194. D	195. D	196. A	197. D	198. C
199. A	200. C	201. D	202. C	203. B	204. D
205. C	206. D	207. B	208. C	209. C	210. D
211. B	212. C	213. D	214. C	215. B	216. B
217. D	218. B	219. D	220. A	221. A	222. D
223. A	224. C	225. A	226. B	227. C	228. C
229. D	230. B	231. C	232. A	233. C	234. A
235. B	236. A	237. C	238. C	239. D	240. D
241. B	242. C	243. D	244. C	245. C	246. B
247. A	248. C	249. A	250. D	251. A	252. C

(276) MCQs IN BIOCHEMISTRY

253. D	254. D	255. C	256. C	257. C	258. D
259. D	260. A	261.B	262. B	263. A	264. A
265. C	266. D	267. B	268. C	269. B	270. D
271. C	272. B	273. A	274. C	275. A	276. C
277. A	278. B	279. C	280. C	281. D	282. D
283. C	284. D	285. C	286. B	287. A	288. A
289. D	290. B	291.B	292. C	293.B	294. A
295. C	296. A	297. D	298. C	299. C	300. D
301.B	302. C	303. B	304. A	305. C	306. D
307. D	308. B	309. B	310. C	311. A	312. C
313. A	314. B	315. B	316. A	317. A	318. D
319. D	320. A	321. C	322. C	323. C	324. C
325. A	326. D	327. A	328. B	329. C	330. D
331. C	332. B	333. A	334. D	335. D	336. C
337. A	338. C	339. C	340. C	341. C	342. D
343. A	344. A	345. B	346. D	347. C	348. B
349. B	350. D	351. A	352. B	353. D	354. C
355. A	356. B	357. D	358. A	359. D	360. B
361.B	362. A	363. A	364. C	365. C	366. C
367. D	368. D	369. B	370. B	371.B	372. C
373. B	374. D	375. C	376. B	377. B	378. D
379. D	380. B	381. D	382. D	383. D	384. C
385. B	386. B	387. C	388. D	389. C	390. D
391. C	392. D	393. A	394. C	395. D	396. A
397. B	398. B	399. C	400. A	401. D	402. B
403. D	404. A	405. D	406. C	407. D	408. C
409. D	410. A	411. C	412. B	413. A	414. C
415. D	416. B	417. C	418. A	419. D	420. C
421. C	422. D	423. D	424. D	425. C	426. C
427. C	428. C	429. D	430. C	431.B	432. C
433. D	434. C	435. C	436. B	437. D	438. C
439. B	440. C	441. C	442. A	443. C	444. C
445. D	446. D	447. D	448. C	449. A	450. D
451. D	452. B	453. D	454. D	455. B	456. C
457. A	458. D	459. B	460. A	461. C	462. D
463. C	464. B	465. A	466. C	467. B	468. D
469. A	470. A	471. B	472. D	473. D	474. C
475. C	476. D	477.A	478. A	479. C	480. C
481. D	482. D	483. C	484. C	485. B	486. D
487. A	488. B	489. D	490. A	491.B	492. B
493. A	494. D	495. B	496. D	497. C	498. D
499. C	500. C	501. A	502. B	503. D	504. D
505. C	506. C	507. A	508. C	509. C	510. B

NUCLEIC ACIDS 277

511.B	512. A	513. D	514. B	515. D	516.B	
517. D	518. C	519.B	520. B	521.B	522. C	
523. C	524. B	525. C	526. C	527. C	528. A	
529. C	530. B	531. D	532. A	533. A	534. B	
535. C	536. C	537. C	538. B	539. D	540. D	
541.B	542. B	543. C	544. D	545. A	546. C	
547. A	548. B	549. B	550. C	551. C	552. D	
553. C	554. A	555. D	556. B	557. C	558. A	
559. B	560. C	561. C	562. A	563. A	564. A	
565. A	566. C	567. C	568. C	569. D	570. B	
<i>57</i> 1.B	572. A	<i>57</i> 3. A	574. C	575. C	576. D	
577. A	578. A	<i>57</i> 9. D	580. B	581. C	582. B	
583. C	584. D	585. B	586. D	587. A	588. B	
589. B	590. B	591. D	592. B	593.B	594. D	
595. C	596. B	597. D	598. B	599. A	600. C	
601.B	602. B	603. D	604. A	605.B	606. C	
607. B	608. D	609. B	610. A	611. D	612. B	
613. D	614. C	615. C	616. B	617. A	618. A	
619. A	620. D	621. C				

This page intentionally left blank

CHAPTER 10

WATER & ELECTROLYTE BALANCE

7. The fluid present in bones which can not

	is relatively constant when expr percentage of the lean body ma about		be exchanged readily because of relative avascularity is about
	(A). 30% (B) 40% (C) 50% (D) 70%		(A) 20 ml/kg (B) 25 ml/kg (C) 45 ml/kg (D) 60 ml/kg
2	The percentage of water contain body of an individual is less bed	ause of	 Water derived in gm from complete oxidation of each gm of carbohydrate is about
•	(A) High fat content (B) Low fat co (C) High protein content(D) Low protein	in content	(A) 0.15 (B) 0.25 (C) 0.35 (D) 0.55
3.	In intracellular compartment in present in ml/kg body weight is		. The oxidation of 100 gm of fat yields
	(A) 100 (B) 200 (C) 200 (D) 330		(A) 50 gm water (B) 107 gm water (C) 150 gm water (D) 200 gm water
4.	In extra cellular compartment, the fluid present in ml/kg of body weight is about		Each gm of protein on complete oxidation yields
	(A) 120 (B) 220 (C) 270 (D) 330		(A) 0.21 gm water (B) 0.31 gm water (C) 0.41 gm water (D) 0.51 gm water
5.	Fluid present in dense connecti and cartilage in ml/kg body v about		The daily total body water derived from oxidation of food stuffs is about
	(A) 10 (B) 20 (C) 45 (D) 55		(A) 100 ml (B) 300 ml (C) 600 ml (D) 1000 ml
6.	The total body water in ml/l weight in average normal you male is about		. The daily water allowance for normal infant is about
	(A) 200 (B) 400 (C) 600 (D) 1000		(A) 100–200 ml (B) 250–300 ml (C) 330–1000 ml (D) 1000–2000 ml

1. The total body water in various subjects

(280) MCQs IN BIOCHEMISTRY

13. The daily water allowance for normal adult (60 kg) is about

- (A) 200-600 ml
- (B) 500-800 ml
- (C) 800-1500 ml
- (D) 1800-2500 ml

Insensible loss of body water of normal adult is about

- (A) 50-100 ml
- (B) 100-200 ml
- (C) 300-500 ml
- (D) 600-1000 ml

15. The predominant cation of plasma is

- (A) Na+
- (B) K+
- (C) Ca+
- (D) Mg++

16. The predominant action of plasma is

- (A) HCO₃-
- (B) Cl-
- (C) HPO₄--
- (D) SO₄ --

17. Vasopressin (ADH)

- (A) Enhance facultative reabsorption of water
- (B) Decreases reabsorption of water
- (C) Increases excretion of calcium
- (D) Decreases excretion of calcium

Enhanced facultative reabsorption of water by Vasopressin is mediated by

- (A) Cyclic AMP
- (B) Ca++
- (C) Cyclic GMP
- (D) Mg++

19. Action of kinins is to

- (A) Increase salt excretion
- (B) Decrease salt retention
- (C) Decrease water retention
- (D) Increase both salt and water excretion

20. The activity of kinins is modulated by

- (A) Prostaglandins
- (B) Ca++
- (C) Increased cAMP level
- (D) Increased cGMP level

21. An important cause of water intoxication is

- (A) Nephrogenic diabetes insipidus
- (B) Renal failure
- (C) Gastroenteritis
- (D) Fanconi syndrome

Minimum excretory urinary volume for waste products elimination during 24 hrs is

- (A) 200-300 ml
- (B) 200-400 ml
- (C) 500-600 ml
- (D) 800 ml

23. In primary dehydration

- (A) Intracellular fluid volume is reduced
- (B) Intracellular fluid volume remains normal
- (C) Extracellular fluid volume is much reduced
- (D) Extracellular fluid volume is much increased

24. An important cause of secondary dehydration is

- (A) Dysphagia
- (B) Oesophageal varices
- (C) Oesophageal varices
- (D) Gastroenteritis

25. Important finding of secondary dehydration is

- (A) Intracellular oedema
- (B) Cellular dehydration
- (C) Thirst
- (D) Muscle cramps

26. Urine examination in secondary dehydration shows

- (A) Ketonuria
- (B) Low specific gravity
- (C) High specific gravity
- (D) Albuminuria

27. The total calcium of the human body is about

- (A) 100–150 g
- (B) 200-300 g
- (C) 1-1.5 kg
- (D) 2-3 kg

28. Daily requirement of calcium for normal adult human is

- (A) 100 mg
- (B) 800 mg
- (C) 2 g
- (D) 4 g

29. Normal total serum calcium level varies between

- (A) 4-5 mg
- (B) 9-11 mg
- (C) 15-20 mg
- (D) 50-100 mg

(C) Vitamin K

(D) Vitamin E

30.	The element needer	d in quantities greater uman beings is	39.		erum product o hildren is norn		x p (in mg/100ml
	(A) Calcium (C) Selenium	(B) Zinc (D) Cobalt			20 50		30 60
31.		nt in the human body than any other cation	40.	100) ml) in serum i	s be	
		(B) Calcium (D) Iron			30 70	٠,	50 100
32.	• •	he total body calcium	41.	filte			of calcium in gms riod by the rena
	(A) 1 (C) 55	(B) 11 (D) 99		(A) (C)	5 15		10 20
33.	The percentage of calcium present in extracellular fluid is		42.		percentage of eces is	the c	calcium eliminated
	(A) 1 (C) 10	(B) 5 (D) 50		, ,	10–20 50–60		30–40 70–90
34.	The physiologically active form of calcium is (A) Protein bond		43.	The maximal renal tubular reabsorptive capacity for calcium (Tmca) in mg/min is about			
	(B) Ionised				1.5 ± 0.1		
	(C) Complexed with a(D) Complexed with a		44		5.5 ± 1.2		10.2 ± 2.2 I by renal tubula i
35.	The normal concentration of calcium in C.S.F is			def		erite	d) which interferes
	(A) 1.5–2.5 mg/100 m (B) 2.5–4 mg/100 m (C) 4.5–5 mg/100 m	l		(C)	Sodium	(D)	
	(D) 9–10 mg/100 ml		45.	roid	d glands result	ing i	al of the parathy into hypoparathy tion of the serum
36.	Absorption of calcium is increased on a				ium may drop		
	(A) High protein diet(C) High fat diet	•			11 mg 9 mg		10 mg 7 mg
37.	Calcium absorption	is interfered by	46.	One	e of the princip	al ca	tions of soft tissue
	(A) Protein in diet(B) Phytic acid in cere(C) Alkaline intestinal(D) Vitamin D			(A)	d body fluids is Mg Mn	(B)	S Co
38.	Calcium absorption	is increased by	47.		normal concer whole blood is	ntrat	ion of magnesium
_ ••	(A) Vitamin D	(B) Vitamin C				(B)	1-2 mg/100 ml

(C) 2-4 mg/100 ml (D) 4-8 mg/100 ml

MCQs IN BIOCHEMISTRY

40	Th			: £	-7				•-
40.	The normal concentration of magnesium in C.S.F is about			57.	Hypernatremia may occur in				
			(R)	3 mg/100 ml		(A)	'		
				8 mg/100 ml			Diuretic medication	on	
		•		•			Heavy sweating		
49.		•		t of muscle is about		(D)	Kidney disease		
		5 mg/100 ml 21 mg/100 ml		-	58.		metabolism of hormone:	sodi	um is regulated by
		0.		3.			Insulin	(B)	Aldosterone
50.		estinai absorpt reased in	ion	of magnesium is			PTH	, ,	Somatostatin
		Calcium deficient	امنه			, ,			
		High calcium diet			39.	is	principal cano	n in	intracellular fluid
		High oxalate diet					د مانیس	/D1	Datassium
		High phytate diet					Sodium Calcium		Potassium Magnesium
		• , ,				, ,			•
51.		Alcoholism	iesiu	ım may occur with	60.		e normal concent ole blood is	trati	on of potassium in
	(B)	Diabetes mellitus				(A)	50 mg/100 ml	(B)	100 mg/100 ml
	(C)	Hypothyroidism				(C)	150 mg/100 ml	(D)	200 mg/100 ml
	(D)	Advanced renal f	ailur	е	61.	The	normal concen	trati	on of potassium in
52.	Нуј	permagnesemic	ı mo	y be observed in	• • • • • • • • • • • • • • • • • • • •	human plasma in meq/l is about			
		Hyperparathyroid		,			-	(B)	
	(B)					(C)		(D)	
	(C)	Kwashiorkar			62	The	normal concen	trati	on of notassium in
	(D)	Primary aldostero	nism		02.	 The normal concentration of potassium in cells in ng/100 ml is about 			
53.	Na	·/K·-ATPase alo	ng v	with ATP requires		(A)	100	(B)	200
	(A)	Ca	(B)	Mn		(C)	350	(D)	440
	(C)	Mg	(D)	Cl	63.	Pot	assium content	of n	erve tissue in mg/
54	The	principal catio	n in	extracellular fluid			0 ml is about	•	,
J-1.	is	principal carlo		OXITACONOIAI NOIA		(A)	200	(B)	330
	(A)	Sodium	(B)	Potassium		(C)			530
		Calcium	٠,	Magnesium	4.1	, ,			
E E	` '			tion of sodium (in	04.		/100 ml is abo		muscle tissue in
55.		/100 ml) of hur				_	50–100		100–150
	_	100		200		(C)	250–400		150–200
	(C)	250	٠,	330		` '			
					65.				ns of low serum
56.				dium may occur in			assium concent		on includes
		Adrenocortical in		iency		(A)	Muscle weakness	5	
	(B)	Hypoparathyroidi				(B)	Confusion		
	(C)	,, , ,	lism			(C)			
	(D)	Thyrotoxicosis				(D)	Tingling of extrem	iiīies	

66.	Potassium metabolism is regulated by the
	hormone:

- (A) Aldosterone
- (B) PTH
- (C) Somatostatin
- (D) Estrogen

67. A high serum potassium, accompanied by a high intracellular potassium occurs in

- (A) Adrenal insufficiency
- (B) Any illness
- (C) Gastrointestinal losses
- (D) Cushing's syndrome

68. Hypokalemia occurs in

- (A) Cushing's syndrome
- (B) Addison's disease
- (C) Renal failure
- (D) Advanced dehydration

69. Cardiac arrest may occur due to over doses of

- (A) Sodium
- (B) Potassium
- (C) Zinc
- (D) Magnesium

70. The normal concentration of chloride in mg/100 ml of whole blood is about

- (A) 200
- (B) 250
- (C) 400
- (D) 450

The normal concentration of chloride in mg/100 ml of plasma is about

- (A) 100
- (B) 200
- (C) 365
- (D) 450

72. The normal concentration of chlorine in mg/100 ml of C.S.F is about

- (A) 200
- (B) 250
- (C) 300
- (D) 440

73. Hypokalemia with an accompanying hypochloremic alkalosis may be observed in

- (A) Cushing's syndrome(B) Addison's disease
- (C) Hyptothyroidism (D) Malnutrition

74. Hypercholremia is associated with

- (A) Hyponatremia
- (B) Hypernatremia
- (C) Metabolic alkalosis (D) Respiratory acidosis

75. The exclusive function of iron in the body is confined to the process of

- (A) Muscular contraction
- (B) Nerve excitation
- (C) Cellular respiration
- (D) Blood coagulation

76. The normal pH of the blood is

- (A) 7.0
- (B) 7.1
- (C) 7.2
- (D) 7.4

77. The normal concentration of bicarbonate in blood is

- (A) 21 meq/L
- (B) 24 meq/L
- (C) 26 meg/L
- (D) 30 meq/L

78. At the pH of blood 7.4, the ratio between the carbonic acid and bicarbonate fractions is

- (A) 1:10
- (B) 1:20
- (C) 1:30
- (D) 1:40

79. A 0.22 M solution of lactic acid (pK_a 3.9) was found to contain 0.20 M in the dissociated form and 0.02 M undissociated form, the pH of the solution is

- (A) 2.9
- (B) 3.3
- (C) 4.9
- (D) 5.4

80. Important buffer system of extracellular fluid is

- (A) Bicarbonate/carbonic acid
- (B) Disodium hydrogen phosphate/sodium dihydrogen phosphate
- (C) Plasma proteins
- (D) Organic Phosphate

81. The pH of body fluids is stabilized by buffer systems. The compound which will be the most effective buffer at physiologic pH is

- (A) $Na_2HPO_4 pK_a = 12.32$
- (B) $Na_2HPO_4 pK_a=7.21$
- (C) $NH_4OH pK_0 = 7.24$
- (D) Citric acid $pK_a = 3.09$

284 MCQs IN BIOCHEMISTRY

82.	The percen	tage of CO	$_{2}$ carrying cap	acity				
	of whole	blood by	hemoglobin	and				
	oxyhemoglobin is							

- (A) 20
- (B) 40
- (C) 60
- (D) 80

83. The normal serum CO₂ content is

- (A) 18-20 meg/L
- (B) 24-29 meg/L
- (C) 30-34 meg/L
- (D) 35-38 meg/L

84. The carbondioxide carrying power of the blood residing within the red cells is

- (A) 50%
- (B) 60%
- (C) 85%
- (D) 100%

85. Within the red blood cells the buffering capacity contributed by the phosphates is

- (A) 5%
- (B) 10%
- (C) 20%
- (D) 25%

86. The normal ratio between the alkaline phosphate and acid phosphate in plasma

- (A) 2:1
- (B) 1:4
- (C) 20:1
- (D) 4:1

87. The oxygen dissociation curve for hemoglobin is shifted to the right by

- (A) Decreased O₂ tension
- Decreased CO₂ tension
- (C) Increased CO₂ tension
- (D) Increased pH

88. Bohr effect is

- Shifting of oxyhemoglobin dissociation curve to the right
- Shifting of oxyhemoglobin dissociation curve to the left
- (C) Ability of hemoglobin to combine with O₂
- (D) Exchange of chloride with carbonate

89. Chloride shift is

- (A) H ions leaving the RBC in exchange of Cl-
- (B) CI-leaving the RBC in exchange of bicarbonate
- (C) Bicarbonate ion returns to plasma and exchanged with chloride which shifts into the
- (D) Carbonic acid to the plasma

90. Of the total body water, intracellular compartment contains about

- (A) 50%
- (B) 60%
- (C) 70%
- (D) 80%

91. Osmotically active substances in plasma

- (A) Sodium
- (B) Chloride
- (C) Proteins
- (D) All of these

92. Osmotic pressure of plasma is

- (A) 80-100 milliosmole/litre
- 180-200 milliosmole/litre
- 280-300 milliosmole/litre
- (D) 380-400 milliosmole/litre

93. Contribution of albumin to colloid osmotic pressure of plasma is about

- (A) 10%
- (B) 50%
- (C) 80%
- (D) 90%

94. The highest concentration of proteins is present in

- (A) Plasma
- (B) Interstitial fluid
- (C) Interstitial fluid
- (D) Transcellular fluid

95. Oncotic pressure of plasma is due to

- (A) Proteins
- (B) Chloride
- (C) Sodium
- (D) All of these

96. Oncotic pressure of plasma is about

- (A) 10 mm of Ha
- (B) 15 mm of Hg
- (C) 25 mm of Hg
- (D) 50 mm of Hg

97. Oedema can occur when

- (A) Plasma Na and Cl are decreased
- Plasma Na and Cl are increased
- (C) Plasma proteins are decreased
- Plasma proteins are increased

98. Colloid osmotic pressure of intracellular fluid is

- (A) Equal to that of plasma
- (B) More than that of plasma
- (C) More than that of plasma
- (D) Nearly zero

99. The water produced during metabolic reactions in an adult is about

- (A) 100 ml/day
- (B) 300 ml/day
- (C) 500 ml/day
- (D) 700 ml/day

100. The daily water loss through gastrointestinal tract in an adult is about

- (A) Less than 100 ml/day
- (B) 200 ml/day
- (C) 300 ml/day
- (D) 400 ml/day

101. Recurrent vomiting leads to loss of

- (A) Potassium
- (B) Chloride
- (C) Bicarbonate
- (D) All of these

102. Obligatory reabsorption of water

- (A) Is about 50% of the total tubular reabsorption of water
- (B) Is increased by antidiuretic hormone
- (C) Occurs in distal convoluted tubules
- (D) Is secondary to reabsorption of solutes

103. Antidiuretic hormone

- (A) Is secreted by hypothalamus
- (B) Secretion is increased when osmolality of plasma decreases
- (C) Increases obligatory reabsorption of water
- (D) Acts on distal convoluted tubules and collecting ducts

104. Urinary water loss is increased in

- (A) Diabetes mellitus
- (B) Diabetes insipidus
- (C) Chronic glomerulonephritis
- (D) All of these

105. Diabetes insipidus results from

- (A) Decreased insulin secretion
- (B) Decreased ADH secretion
- (C) Decreased aldosterone secretion
- (D) Unresponsiveness of osmoreceptors

106. Thiazide diuretics inhibit

- (A) Carbonic anhydrase
- (B) Aldosterone secretion
- (C) ADH secretion
- (D) Sodium reabsorption in distal tubules

Furosemide inhibits reabsorption of sodium and chloride in

- (A) Proximal convoluted tubules
- (B) Loop of Henle
- (C) Distal convoluted tubules
- (D) Collecting ducts

108. A diuretic which is an aldosterone antagonist is

- (A) Spironolactone
- (B) Ethacrynic acid
- (C) Acetazolamide
- (D) Chlorothiazide

109. In a solution having a pH of 7.4, the hydrogen ion concentration is

- (A) 7.4 nmol/L
- (B) 40 nmol/L
- (C) 56 nmol/L
- (D) 80 nmol/L

110. At pH 7.4, the ratio of bicarbonate : dissolved CO₂ is

- (A) 1:1
- (B) 10:1
- (C) 20:1
- (D) 40:1

111. Quantitatively, the most significant buffer system in plasma is

- (A) Phosphate buffer system
- (B) Carbonic acid-bicarbonate buffer system
- (C) Lactic acid-lactate buffer system
- (D) Protein buffer system

112. In a solution containing phosphate buffer, the pH will be 7.4, if the ratio of monohydrogen phosphate: dihydrogen phosphate is

- (A) 4:1
- (B) 5:1
- (C) 10:1
- (D) 20:1

113. pK_a of dihydrogen phosphate is

- (A) 5.8
- (B) 6.1
- (C) 6.8
- (D) 7.1

114. Buffering action of haemoglobin is mainly due to its

- (A) Glutamine residues
- (B) Arginine residues
- (C) Histidine residues
- (D) Lysine residues

MCQs IN BIOCHEMISTRY

115. Respiratory acidosis results from

- (A) Retention of carbon dioxide
- (B) Excessive elimination of carbon dioxide
- (C) Retention of bicarbonate
- (D) Excessive elimination of bicarbonate

116. Respiratory acidosis can occur in all of the following except

- (A) Pulmonary oedema
- (B) Hysterical hyperventilation
- (C) Pneumothorax
- (D) Emphysema

117. The initial event in respiratory acidosis is

- (A) Decrease in pH
- (B) Increase in pCO₂
- (C) Increase in plasma bicarbonate
- (D) Decrease in plasma bicarbonate

118. Respiratory alkalosis can occur in

- (A) Bronchial asthma
- (B) Collapse of lungs
- (C) Hysterical hyperventilation
- (D) Bronchial obstruction

119. The primary event in respiratory alkalosis is

- (A) Rise in pH
- (B) Decrease in pCO₂
- (C) Increase in plasma bicarbonate
- (D) Decrease in plasma chloride

120. Anion gap is the difference in the plasma concentrations of

- (A) (Chloride) (Bicarbonate)
- (B) (Sodium) (Chloride)
- (C) (Sodium + Potassium) (Chloride + Bicarbonate)
- (D) (Sum of cations) (Sum of anions)

121. Normal anion gap in plasma is about

- (A) 5 meq/L
- (B) 15 meq/L
- (C) 25 meq/L
- (D) 40 meq/L

122. Anion gap is normal in

- (A) Hyperchloraemic metabolic acidosis
- (B) Diabetic ketoacidosis
- (C) Lactic acidosis
- (D) Uraemic acidosis

123. Anion gap is increased in

- (A) Renal tubular acidosis
- B) Metabolic acidosis resulting from diarrhoea
- (C) Metabolic acidosis resulting from intestinal obstruction
- (D) Diabetic ketoacidosis

124. Anion gap in plasma is because

- (A) Of differential distribution of ions across cell membranes
- (B) Cations outnumber anions in plasma
- (C) Anions outnumber cations in plasma
- (D) Of unmeasured anions in plasma

125. Salicylate poisoning can cause

- (A) Respiratory acidosis
- (B) Metabolic acidosis with normal anion gap
- (C) Metabolic acidosis with increased anion gap
- (D) Metabolic alkalosis

126. Anion gap of plasma can be due to the presence of all the following except

- (A) Bicarbonate
- (B) Lactate
- (C) Pyruvate
- (D) Citrate

127. All the following features are found in blood chemistry in uncompensated lactic acidosis except

- (A) pH is decreased
- (B) Bicarbonate is decreased
- (C) pCO₂ is normal
- (D) Anion gap is normal

128. All the following statements about renal tubular acidosis are correct except

- (A) Renal tubules may be unable to reabsorb bicarbonate
- (B) Renal tubules may be unable to secrete hydrogenions
- (C) Plasma chloride is elevated
- (D) Anion gap is decreased

All the following changes in blood chemistry can occur in severe diarrhoea except

- (A) Decreased pH
- (B) Decreased bicarbonate
- (C) Increased pCO₂
- (D) Increased chloride

130. During compensation of respiratory alkalosis, all the following changes occur except

- (A) Decreased secretion of hydrogen ions by renal tubules
- (B) Increased excretion of sodium in urine
- (C) Increased excretion of bicarbonate in urine
- (D) Increased excretion of ammonia in urine

131. Blood chemistry shows the following changes in compensated respiratory acidosis:

- (A) Increased pCO₂
- (B) Increased bicarbonate
- (C) Decreased chloride
- (D) All of these

132. Metabolic alkalosis can occur in

- (A) Severe diarrhoea
- (B) Renal failure
- (C) Recurrent vomiting
- (D) Excessive use of carbonic anhydrase inhibitors

133. Which of the following features are present in blood chemistry in uncompensated metabolic alkalosis except?

- (A) Increased pH
- (B) Increased bicarbonate
- (C) Normal chloride
- (D) Normal pCO₂

134. One joule is the energy required to

- (A) Raise the temperature of 1 gm of water by 1°C
- (B) Raise the temperature of 1 kg of water by 1°C

- (C) Move a mass of 1 gm by 1 cm distance by a force of 1 Newton
- (D) Move a mass of 1 kg by 1 m distance by a force of 1 Newton

135. Organic compound of small molecular size is

- (A) Urea (B) Uric acid
- (C) Creatinine (D) Phosphates

136. Organic substance of large molecular size is

- (A) Starch
- (B) Insulin
- (C) Lipids
- (D) Proteins

137. Body water is regulated by the hormone:

- (A) Oxytocin
- (B) ACTH
- (C) FSH
- (D) Epinephrine

138. Calcium is required for the activation of the enzyme:

- (A) Isocitrate dehydrogenase
- (B) Fumarase
- (C) Succinate thickinase
- (D) ATPase

139. Cobalt is a constituent of

- (A) Folic acid
- (B) Vitamin B₁₂
- (C) Niacin
- (D) Biotin

140. Calcium absorption is inferred by

- (A) Fatty acids
- (B) Amino acids
- (C) Vitamin D
- (D) Vitamin B₁₂

141. The average of pH of urine is

- (A) 5.6
- (B) 6.0
- (C) 6.4
- (D) 7.0

ANSWERS							
1. D	2. A	3. D	4. C	5. C	6. C		
7. C	8. D	9. B	10. C	11.B	12. C		
13. D	14. D	15. A	16. B	17. A	18. A		
19. D	20. A	21.B	22. C	23. A	24. D		
25. A	26. B	27. C	28. B	29. B	30. A		
31.B	32. D	33. A	34. B	35. C	36. A		
37. B	38. A	39. C	40. A	41.B	42. D		
43. B	44. B	45. D	46. A	47. C	48. B		
49. C	50. A	51. A	52. B	53. C	54. A		
55. D	56. A	57. A	58. B	59. B	60. D		
61. D	62. D	63. D	64. C	65. A	66. A		
67. A	68. A	69. B	70. B	71. C	72. D		
73. A	74. B	75. C	76. D	77. C	78. B		
79. C	80. A	81.B	82. C	83.B	84. C		
85. D	86. D	87. C	88. A	89. C	90. C		
91. D	92. C	93. C	94. C	95. A	96. C		
97. C	98. B	99. B	100. A	101.B	102. D		
103. D	104. D	105.B	106. D	107. B	108. A		
109. B	110. C	111.B	112. A	113. C	114. C		
115. A	116. B	117.B	118. C	119.B	120. C		
121.B	122. A	123.B	124. B	125. C	126. A		
127. D	128. D	129. C	130. D	131. D	132. C		
133. D	134. D	135. A	136. D	137. A	138. D		
139. B	140. A	141.B					